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ABSTRACT
Invariant discovery is one of the central problems in software
verification. This paper reports on an approach that ad-
dresses this problem in a novel way; it crowdsources logical
expressions for likely invariants by turning invariant discov-
ery into a computer game. The game, called Binary Fission,
employs a classification model. In it, players compose pre-
conditions by separating program states that preserve or vi-
olate program assertions. The players have no special exper-
tise in formal methods or programming, and are not specif-
ically aware they are solving verification tasks. We show
that Binary Fission players discover concise, general, novel,
and human readable program preconditions. Our proof of
concept suggests that crowdsourcing o↵ers a feasible and
promising path towards the practical application of verifica-
tion technology.

1. INTRODUCTION
A key problem in software verification is to find abstrac-

tions that are su�ciently precise to enable the proof a de-
sired program property, but su�ciently general to allow an
automated tool to reason about the program. Various tech-
niques, such as predicate abstraction [2], interpolation [21],
logical abduction [8], and lately machine learning [25, 30, 13]
have been proposed to automatically find such abstractions
by identifying suitable program invariants. Each of these
techniques provides its own approach for inventing suitable
predicates, but unfortunately, the space of possibilities is es-
sentially infinite and it is not currently feasible to reliably
find such predicates via automated methods.

The human process for finding invariants relies on highly
skilled people, schooled in formal methods, to reason from
the purpose of programs towards possible predicates. How-
ever, this approach has an issue of scale: millions of pro-
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grams could benefit from formal verification, while there are
only a few thousand such experts world-wide. Automated
methods rely on search, and expectations to constrain the
predicate invention process. White box techniques lever-
age knowledge about program content to propose candidate
invariants, while black box methods search a space of tem-
plates (often boolean functions of linear inequalities) using
comparatively little knowledge of program structure.

Recent work on classification techniques employ data to
constrain predicate invention. Here, the objective is to in-
duce a boolean expression over a base set of predicates that
admits “good” program states (inputs that satisfy desired
properties encoded as assertions) while excluding all “bad”
states (input that violates such assertions on execution).
Machine learning methods are well-suited to this task [13,
16, 26, 25]. These techniques output likely invariants that
can be tested by static or dynamic analysis methods to de-
termine if they are invariant conditions of the underlying
program. The key issue in this approach is generalization;
useful invariants are broad statements while classification
methods tend to overfit the data. Moreover, the data on
good and bad program states necessary to achieve robust
generalization is in short supply, as program sampling is it-
self a hard task.

This paper reports on a classification based system that
addresses predicate invention in a novel way; it crowdsources
logical expressions for likely invariants by turning invariant
generation into a computer game. This approach has several
potential benefits:

• It can take advantage of the human ability to extract
general predicates from small amounts of data,

• It makes predicate invention accessible to a much larger
pool of individuals,

• It allows the crowd to compose unexpected, likely in-
variants that fully automated methods might miss.

In more detail, the game, called Binary Fission, addresses
the subtask of precondition mining; it assumes a set of anno-
tations that encode desired properties, and seeks predicates
that imply the annotations hold under program execution.
Players function as classification engines. They collectively
compose likely invariants by applying “filters” to separate
“quarks” in a graphical display, without any specific aware-
ness that they are performing program verification.



Binary Fission is an instance of a growing number of
games with a purpose [4, 15, 28], which share the premise
that many di�cult and important tasks can be advanced by
crowdsourcing [24]. As such, Binary Fission is an existence
proof for crowdsourcing precondition mining. This paper
also demonstrate that it is e↵ective. We claim that:

• The crowd can employ Binary Fission to compose likely
invariants for non-trivial programs.

• Binary Fission influences the crowd to produce likely
invariants that are also program invariants.

• Binary Fission influences the crowd to produce pro-
gram invariants that are non-trivial, reasonably gen-
eral, and human readable.

In addition, we show that the invariants produced via Binary
Fission are novel relative to the output of DTinv [16] (a
related, fully automated classification system).

The following sections describe our approach and results.
We begin by framing this e↵ort against related work, and in-
troducing Binary Fission. Section 4 discusses our methodol-
ogy for assembling crowdsourced likely invariants from player
contributions, extracting program invariants from that set,
assessing the quality of crowdsourced results. Section 5 in-
troduces the domain program we examine for preconditions,
and Section 6 presents results obtained with Binary Fission.
Section 7 discusses the source of power behind these results,
while Section 8 examines threats to validity. We end with
concluding remarks.

2. RELATED WORK
The problem of finding suitable program invariants is a

central part of formal verification research. Striking the bal-
ance between an abstraction that is su�ciently precise to
prove a property and su�ciently abstract to reason about
is what makes program analysis scalable. In static analy-
sis, a variety of techniques exist to infer program invariants,
such as CEGAR [2], Craig interpolation [21], or logical ab-
duction [8]. However, these approaches have the inherent
limitation that they rely on information generated from the
source code of the analyzed program. If the needed invari-
ant is a relation between variables that cannot be inferred
from the source code, these techniques must fall back on
heuristics or fail to compute an invariant.

As an alternative to static invariant discovery, we have
seen an increasing activity in research on data driven ap-
proaches. A pioneer in this field is Daikon [10, 9, 11] which
takes a set of good program states as input and applies ma-
chine learning to find an invariant that describes all states
in this set. More recently, several approaches have extended
this idea of inferring invariants from traces [22], some of
these techniques also consider sets of bad states that should
be excluded by a likely invariant [13, 16, 26, 25]. The bene-
fit of machine learning or data driven approaches over static
invariant discovery is that these approaches can search for
invariants in a larger space and discover invariants even if
they are based on relations that are not easily inferred from
the program text. This paper explicitly compares results
obtained by Binary Fission with results obtained through
DTinv [16], which provides a classification model that is
very close in spirit to our work.

Since Binary Fission is a crowdsourcing game, it can viewed
as a game with a purpose (GWAP) [29]. Since Binary Fis-
sion involves people performing work that computers cannot,
it can also be viewed as a form of human computation (see
[1] for design issues concerning motivation and evaluation
in this context, and [20] for a survey of crowdsourcing in
software engineering). Since Binary Fission uses a game re-
ward system to motivate players, it is a form of gamification
[6]. We view Binary Fission as a deeper application of game
design principles than typical in gamification e↵orts, as it
simultaneously makes a hard science problem playable, and
disguises the core activity more than typical human compu-
tation tasks.

Overall, the idea of building crowdsourced games for hard
scientific tasks has shown enough promise to motivate a
large investment in this area. Binary Fission was developed
as part of the Crowd Sourced Formal Verification (CSFV)
program, funded by DARPA in the United States. This
program has resulted in the creation of ten games focused
on the intersection with formal software verification [7, 18,
12]; a summary of the games developed in this program can
be found in [5], and many of the games can be played at
verigames.com.

3. BINARY FISSION
Binary Fission is a game for crowdsourcing program in-

variants. It is one of several recent e↵orts designed to exploit
the “wisdom of the crowd” by transforming hard scientific
problems into games [4, 15, 28]. Binary Fission is intended
for players with no expertise in formal verification methods,
and the players are at most peripherally aware that they are
solving verification problems through game play.

The design for Binary Fission was inspired by the need for
a broadly accessible mechanism for finding invariants. The
game employs a classification metaphor. At the technical
level, it inputs a program annotated with postconditions, a
set of predicates relating program variables, and two sets of
initial program states (each state is a vector of variable val-
ues), where “good” states satisfy the assertions, and “bad”
states violate those assertions on program execution. Each
Binary Fission player employs the available predicates to
find a classification tree that separates good data from bad.
This tree defines a logical formula representing a likely in-
variant.

At the game level, Binary Fission hides the nature of the
program, data, and predicates from the player. Instead, the
game’s graphical interface presents problems to players in
abstract form. As shown in Figure 1, it depicts program
states as spheres, called quarks, colored blue or gold de-
pending upon whether the state is good or bad. The quarks
are initially mixed together inside the nucleus of an “atom.”
The player’s goal is to separate the gold from the blue quarks
using a set of filters (corresponding internally to predicates),
which are capable of splitting the atom’s nucleus.1 The
wheel around the quarks represents these predicates as pen-
tagons. Each filter evaluates to true or false when it is bound
to a given program state. Mousing over the wheel of pen-
tagons displays the results of applying the associated filter
to the program state; quarks bunch up on the left if the filter
evaluates them to true, and they move to the right if the fil-

1We use the terms predicate and filter interchangeably
throughout the paper.



ter evaluates them to false. Di↵erent filters create di↵erent
splits, and the player’s job is to decide which filters to apply,
and in what order.

Figure 1: Binary Fission representation of a nucleus
with blue and gold quarks surrounded by Þlters

By mousing over pentagons, the player quickly sees the
e↵ect of many filters on the di↵erent quarks. The player
clicks on a filter once she finds one that she would like to
apply. That action splits the “atom” into two child nodes.
The left child contains all states from the root that satisfy
the predicate, and the right child contains states that falsify
the predicate. The recursive application of this process on
the left and the right child creates a decision tree as shown
in Figure 2.

Figure 2: Sample decision tree built by a Binary
Fission player

Binary Fission imposes a five level depth limit on player
generated classification trees. This bounds the complexity
of the resulting classifiers, and limits the screen real-estate
required for display (a necessary concern in game design).
Binary Fission also provides a scoring function (shown in
Equation 1) that influences players to create leaf nodes com-

posed purely of good, or bad program states (where the pure
good nodes have special utility for defining likely invariants).

N ⇥
!

i ! leaf nodes

"
purity A

i ⇥ sizeB
i

#
(1)

Here, purity is the maximum over the percentage of good
states and the percentage of bad states in the node, and size
is a count of the quarks (states) in the node. A and B are ar-
bitrary constants. N increases with the count of pure nodes
in the solution, and decreases with the maximum depth of
the classification tree (N > = 1). It influences players to
produce as many pure nodes as possible, as early as possi-
ble, which is a force towards producing useful, and general
descriptors.

Each classification tree produced through Binary Fission
is typically partial: some leaf nodes only contain good states,
some only contain bad states, while others contain a mix-
ture. In addition, the solutions are idiosyncratic, as the play-
ers generally employ di↵erent subsets of filters during game
play. As a result, the game software combines descriptions
of pure good nodes and pure bad nodes across solutions to
obtain a consensus view of the likely invariant. We discuss
this process below.

4. METHODOLOGY
Our methodology for crowdsourcing precondition discov-

ery repeats the following steps:

1. Express an invariant generation task as a data classi-
fication problem.

2. Present the problem to Binary Fission players.

3. Assemble a likely invariant across player solutions.

4. Extract clauses from the likely invariant that satisfy
program assertions.

5. Assess utility of the program preconditions found.

6. Assess novelty of the program preconditions found.

Following these steps, we assess the value added by crowd-
sourcing invariants by comparing the results with the so-
lutions produced via an automated classification technique,
called DTInv [16]. The following sections clarify these tasks.

4.1 Expressing Invariant Generation Tasks
The goal of Binary Fission is to aid the discovery of func-

tion preconditions in a program under analysis. This is
done by searching for combinations of predicates that, when
placed at function entry points, will prevent states that lead
to abnormal termination. These predicates should not, on
the other hand, prevent states that lead to normal program
termination from executing. We express these problems as
classification tasks by specifying {good states, bad states,
predicates} tuples. We obtain the state data by running a
large set of test cases on the underlying program and mon-
itoring its execution with a debugger. We collect the pro-
gram state at the entry point of each function, and monitor
the program’s exit status. If the input state satisfies end
assertions and exits normally, we add that vector of pro-
gram variables to the good states. If it violates assertions
or causes the program to crash, we add it to the set of bad



states. We augment these states by randomly sampling the
variable ranges observed in the program test cases, after val-
idating with gcov [27] that the new values exercise the same
code paths. We retain these states in a hold-out set for test-
ing the generality of any preconditions found, and do not
present them to players.

The objective is to find a combination of predicates that
segregate good and bad states. Binary Fission can utilize
logical predicates of any kind, obtained from any source,
with the caveat that they need to be relevant to the classifi-
cation task at hand in order to be useful. We generate a base
set of predicates by employing the Daikon system [11], which
is able to explain regularities in program states by search-
ing a library of structural forms. In particular, we supply
Daikon with a small subset of good program states (and sep-
arately, a small set of bad states), and collect the candidate
invariants it produces. Individually, the predicates produced
with Daikon on these subsets of program states are not good
discriminators. The job of the Binary Fission player is to
find combinations of predicates that, together, are able to
distinguish between good and bad program states.

We present each of the {good states, bad states, predicates}
tuples generated in this way to multiple Binary Fission play-
ers who create compound logical statements. Binary Fission
has many game levels, each associated with one function of
the program under analysis. A Binary Fission level is com-
posed of a subset of the good and bad states derived for a
given function, and of predicates whose free variables bind
to this program state. As a concrete example, take the algo-
rithm in Figure 3 that computes the quotient and remainder
of dividing the numerator N by the denominator D. To pro-
duce a Binary Fission level for Divide, we collect all (N, D)
pairs observed at function entry during multiple program
executions. The tuples that lead to normal program termi-
nation are labeled as good. However, the program states that
cause a runtime exception (the ones in which the denomi-
nator D equals zero) will be labeled as bad. Predicates over
the program states can be any logical expression involving
N and D.

1 def divide(N, D):
2 if D < 0:
3 (Q,R) = divide(N, -D)
4 return (-Q, R)
5 if N < 0:
6 (Q,R) = divide(-N, D)
7 if R == 0:
8 return (-Q, 0)
9 else:

10 return (-Q - 1, D - R)
11 return divHelper(D, 0, N)
12
13 def divHelper(D, Q, R):
14 if R < D:
15 return (Q, R)
16 return divHelper(D, Q + 1, R - D)

Figure 3: Integer division algorithm

We are interested in finding predicates that will, when
placed at function entry, prevent runtime exceptions and
post-condition violations. For example, the predicate N=D
evaluates to true on some good program states (like N=D=42)
as well as on some bad program states (like N=D=0). For this
reason, N=D is not very helpful at segregating good program
states from bad. On the other hand, the disjunction D >

0 _ D < 0 is a useful discriminator because it evaluates to
true on all valid inputs to the function and to false when
D = 0.

4.2 Presenting the Problem to Players
The game starts with good and bad quarks (program states)

mixed together in an atom’s nucleus. The application of fil-
ters (predicates) on the nucleus splits it into a left and a child
node. Through the recursive application of filters, players
build a decision tree. Figure 4 depicts this process. In this
tree, a player applied predicate P at the root-note, then
predicate Q on the left child from the root, and predicate
R on the right, thus forming a four leafed tree. Two of the
leaves contain only good program states (represented by the
plus signs), one leaf node contains only bad program states
(represented by the minus signs), and one leaf remained im-
pure, that is, it contains both good and bad program states.

4.3 Assembling a Likely Invariant
Each classification tree generated by a Binary Fission player

separates program states into a collection of Pure Good,
Pure Bad, and Impure nodes (where a Pure node only con-
tains program states of one kind). As shown in Figure 4,
a conjunction of predicates that links the root to a Pure
Good node describes a set of states that satisfy program
assertions, and expresses a likely invariant. A single player
solution can contain several such paths. By extension, we
define the disjunction of paths to Pure Good nodes across
all player solutions as the consensus, likely invariant. This
results in an expression in Disjunctive Normal Form:

P ureGoodConjunct 1 _ ... _ P ureGoodConjunct n

Note that the individual conjuncts might be drawn from the
same or di↵erent classification trees. As a result, the con-
juncts might not employ the same variables, or be mutually
exclusive either as logical statements or in terms of the data
they explain.

It is tempting to employ the negation of predicates de-
scribing Pure Bad nodes across players instead, since an in-
variant that excludes Pure Bad states is potentially weaker,
and more desirable than an invariant that explicitly admits
only good states. However, given a partial classifier, the
logical expression ¬(P ureBadConj 1 _ ..._P ureBadConj m )
includes Impure nodes, and accepts bad states that cannot
be admitted by any invariant.

4.4 Extracting Program Invariants
Given a likely invariant expressed in DNF, we use the

CBMC bounded model checker [17] to identify any compo-
nent conjuncts that qualify as program preconditions. That
is, if c1 _ c2 _ ... _ cn is a predicate derived from data
points from function myFunc, we consider each clause ci for
i 2 {1, 2, ..., n} in turn. We place a check of its negation at
the entry of the function as shown on line 2 of Figure 5. We
then run CBMC on this modified program. When CBMC
encounters the if-statement, it splits the analysis between
the two paths. The path in which ci is falsified dies when
it encounters exit(0). On the other hand, when ci is satis-
fied, the analysis continues and the model checker attempts
to find function arguments args that will later cause post-
condition violations (line 6 of Figure 5). If CBMC cannot
find inputs that satisfy ci and violate the postconditions,
then ci is a precondition of the function. The full Binary



Figure 4: Example of a decision tree produced by
Binary Fission. Tracing from the root node to the
two pure positive nodes we have P ^ Q and ¬P ^ R
which form the candidate invariant (P ^Q)_(¬P ^R).

1 def myFunc(args):
2 if (c_i == False): exit(0)
3 # Remainder of the function...
4
5 myFunc(args)
6 assert(postcondition)

Figure 5: Pseudocode showing program transforma-
tion for discovering function preconditions.

Fission invariant is the disjunct of all clauses that satisfy
this test.

4.5 Assessing Invariant Utility
Assuming Binary Fission players discover likely invariants

and program preconditions, we would like to understand the
usefulness of those expressions. We address this question
by measuring the coverage of these invariants against data.
The more data explained, the weaker the likely invariant
or program precondition, and the more utility it o↵ers for
further formal analysis.

Binary Fission relies on a classification technique to sepa-
rate good states from bad. However, classification methods
are prone to overfitting; they must guard against the ten-
dency to explain exactly and only the training data, with-
out providing insight into the general case represented by
the data not seen. Common defenses include penalizing
overly complex expressions considered during classification,
and testing against held back data to ensure the generality
of the induced function. We utilize both techniques here.
In particular, we rely on the Binary Fission scoring function
and depth limit to prevent overfitting, and we distinguish
training data from test sets.

In more detail, we measure expression generality against
a set composed of Good program states. To increase the
amount of data available, we interpolate between good states
supplied with the program under analysis, and ensure that
new states exercise the same code paths as the original
states. We measure coverage of likely invariants against the
training set, and coverage of preconditions against this new
data, which comprises the test set.

4.6 Assessing Invariant Novelty
In addition to assessing the utility of any invariants found,

we examine the conjecture that crowdsourced invariants are
novel relative to the results obtained through other meth-
ods. If they are novel, it is an indication that crowdsourcing
brings some special leverage to the task, and we can analyze
the source of that power.

We attempt to place Binary Fission in context by com-
paring it to other machine learning methods for invariant
discovery. Many invariant learners now exist but DTinv is
possibly the closest in spirit to our work. DTinv is a fully
automated classifier that has been shown to outperform at
least six other machine learning methods for invariant dis-
covery [16]. Like Binary Fission, DTinv builds a decision
tree from good and bad program states (that preserve or vi-
olate end assertions), plus a set of primitive predicates that
relate program variables. The key di↵erences are that DT-
inv builds its own predicates from a basis set (vs importing
an arbitrary predicate set), and it constructs decision trees
of arbitrary depth that perfectly classify the data into Pure
Good and Pure Bad sets (vs the partial classifiers of bounded
depth produced by Binary Fission).

We apply DTinv to the same data used in creating game
levels presented to to Binary Fission players, and we com-
pare the resulting likely invariants for legibility, generality in
terms of data coverage, and veracity as program precondi-
tions. To make the comparisons fair, we pre-process the code
of the program under analysis to represent arrays (which
DTinv cannot currently consume) as separate variables. In
addition, rather than test the DTinv solution as a whole for
its status as a program precondition, we transform it into
Disjunctive Normal Form and test individual disjuncts as
candidate preconditions via the CBMC model checker. This
approach is symmetric with our examination of disjuncts de-
scribing Pure Good nodes in the partial classifiers output by
Binary Fission.

We compare the generality of the likely invariants and
preconditions found by measuring their coverage of program
states, as before.

5. EXPERIMENTAL SETUP
In order to assess our methodology for finding precondi-

tions, we need to employ some program as the subject of
analysis. While Binary Fission can be applied to any pro-
gram, and accept its inputs from any source, the application
to invariant generation imposes constraints. The underlying
program must be compatible with automated analysis tools
that can generate quantities of good and bad data, and can-
didate predicates for input to Binary Fission.

We selected TCAS; an aircraft collision avoidance appli-
cation originally created at Siemens Corporate Research in
1993. TCAS has been a common subject of verification
methods [14, 19] and test case generation systems since it
was incorporated into the Software-artifact Infrastructure
Repository [23].

At the code level, TCAS performs algebraic manipula-
tions of 12 integer variables and a constant four element
array. It contains nested conditionals and logical operators;
there are no loops, dynamic memory allocations or pointer
manipulation. As a result, TCAS admits analysis via model
checking – we use the CBMC model checker to test whether
potential preconditions found through gameplay indeed ex-
clude states that cause postcondition violations. In addition,
TCAS comes with a large set of test data we use to generate
good and bad program states. Finally, the program’s alge-



braic structure is amenable to analysis by Daikon, which we
employ to generate candidate predicates.

TCAS consists of 173 lines of C code split into nine func-
tions. As shown by the call graph in Figure 6, the main
function calls an initialization routine before transferring
control to alt_sep_test, which tests the altitude separation
between an aircraft and intruder that has entered its pro-
tected zone. TCAS then generates warnings, called “Tra�c
Advisories’ (TAs), and recommendations, called“Resolution
Advisories” (RAs), to the pilot. The TAs alert the pilot of
potential threats, while the RAs are proposed a maneuver
meant to safely increase the separation between planes.

Figure 6: TCAS call graph.

A theory for avoiding aircraft collisions determines when
certain maneuvers are safe; these conditions identify safety
properties that the TCAS implementation should ideally
guarantee. Table 1 illustrates some of these safety proper-
ties (reproduced from [3]). For example, the last two entries
specify that a maneuver that reduces the separation between
two planes must never be issued when the planes have in-
truded into each others’ protected space. These safety prop-
erties can be encoded as postconditions of the TCAS pro-
gram, via assertion statements at its end. The problem of
proving the TCAS program safe translates into the task of
verifying that the implementation cannot violate these as-
sertions.

5.1 Game Levels from TCAS
We tackle a subtask of the verification process, which is,

to find suitable preconditions for TCAS functions. Func-
tion preconditions are conditional statements about program
variables; if they hold on input to the function, program ex-
ecution is guaranteed to produce the postconditions that
encode desired properties. We define seven precondition
finding tasks from the TCAS code. They are to discover
preconditions for each of the functions ALIM, alt sep test,
Non Crossing Biased Climb, Non Crossing Biased Descend,
Own Below Threat, Inhibit Biased Climb and Own Above
Threat as shown in Figure 6, where those preconditions en-
sure the conjunction of program postconditions illustrated
in Table 1.

We monitor TCAS’ execution and collect program state
with a Python script driving GDB. We then feed subsets of

the program state to Daikon in order to create simple pred-
icates. For TCAS, the set of predicates consists of several
hundred boolean combinations of equalities and inequalities
among linear functions of 1-4 variables, including max and
min operators, numeric thresholds, and explicit set member-
ship tests. Three sample predicates are shown below.

Alt_Layer_Value >= 0
size(Positive_RA_Alt_Thresh[]) == 4
Climb_Inhibit <
Positive_RA_Alt_Thresh[Alt_Layer_Value]

Figure 7: Sample predicates inferred by running
Daikon on a subset of program states.

From subsets of the {good states, bad states, predicates}
tuples, we create levels in Binary Fission. The game is avail-
able on-line at http://binaryfission.verigames.com, and
we invite readers to try it. To date, close to one thousand
players have generated about three thousand solutions for
TCAS problems.

6. BINARY FISSION RESULTS
Following the methodology described in the previous sec-

tion, we collected crowdsourced solutions for the seven TCAS
problems identified in Section 5.1. For purposes of illustra-
tion, we discuss the solution for the TCAS function Non
Crossing Biased Descend in detail, and then summarize across
the remaining six examples. We discuss the structure and
coverage of the likely invariants found, we identify the valid
program preconditions, and we evaluate the generality of
these results. We assess novelty through comparison of the
Binary Fission and DTinv solutions for the same problem.

6.1 Likely Invariants for TCAS Problems
The consensus solution for Non Crossing Biased Descend

has 398 disjunctive clauses that represent the Pure Good
nodes found across Binary Fission players. Each clause is
a likely crowdsourced invariant. Figure 8 illustrates the
top three, measured by their coverage over program states.
Their content is syntactically similar; each clause is a con-
junct of 2-3 primitive predicates (shown as top-level ANDs),
where the primitives express numeric equalities and inequal-
ities over multiple TCAS variables. These are non-trivial
statements about domain variables, and they appear rea-
sonably general; they clearly do not pick out specific data
values. Following the methodology described in Section 4.5,
we measure the generality of these expressions by their cov-
erage of the training data; they each explain circa 30% of the
good program states. The three likely invariants also appear
to be describing a similar truth, as they utilize many of the
same variables and terms. As a result, they can describe
many of the same states.

The solutions for all seven TCAS problems have a similar
structure. Table 2 shows that they contain between 262 and
704 clauses. These solutions are simple collections, and have
not been simplified; they can overlap both logically and in
terms of the data covered, and their number strictly grows
with the quantity of game play.

6.2 Crowdsourced Solution Progress
Figure 9 illustrates the crowd’s progress towards finding

a consensus likely invariant. It plots cumulative data ex-
plained by the crowdsourced solution, as accumulated in de-



Postcondition Explanation
If Up_Separation � Positive_RA_Alt_Thresh[2] ^ A downward RA is never issued if a downward

Down_Separation < Positive_RA_Alt_Thresh[2] maneuver does not produce adequate separation
Assert result 6= need_Downward_RA
If Up_Separation < Positive_RA_Alt_Tresh[2] ^ An upward RA is never issued if an upward

Down_Separation � Positive_RA_Alt_Tresh[2] maneuver does not produce adequate separation
Assert result 6= need_Upward_RA
If Own_Tracked_Alt > Other_Tracked_Alt A crossing RA is never issued
Assert result 6= need_Downward_RA
If Own_Tracked_Alt < Other_Tracked_Alt A crossing RA is never issued
Assert result 6= need_Upward_RA
If Down_Separation < Up_Separation The RA that produces less separation is never issued
Assert result 6= need_Downward_RA
If Down_Separation > Up_Separation The RA that produces less separation is never issued
Assert result 6= need_Upward_RA

Table 1: TCAS postconditions.

(not(Other_Capability > Two_of_Three_Reports_Valid))
and (not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value]))

(not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value]))
and ((Alt_Layer_Value <= size(Positive_RA_Alt_Thresh)-1))

(not(Alt_Layer_Value >= Up_Separation))
and (not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value]))
and ((Cur_Vertical_Sep != Positive_RA_Alt_Thresh[Alt_Layer_Value]))

Figure 8: The best three likely invariants measured by Good state coverage.

creasing order of predicate quality (i.e., the number of good
program states recognized by the conjunctive predicate as-
sociated with each Pure Good node). This figure supports
several interesting observations. First, the top 20% of the
solutions explain 80% of the data, and this pattern repeats
across all TCAS problems. This suggests a statistical regu-
larity in crowd performance, and an uneven distribution of
expertise across players. Second, the consensus solution is
partial, meaning it fails to explain all the data even after in-
corporating every player’s contribution. This is an expected
result, as Binary Fission limits the depth of player classi-
fication trees – some truths are simply hard to express in
bounded space.

In order to investigate this point further, we employed a
greedy search algorithm to construct a classifier for the same
problem, over the same primitive predicates. The method
used average impurity for scoring splits. When invoked with
a depth limit of 5, the resulting partial classifier explained
21 good program states. This splitting metric clearly pro-
vided insu�cient motivation to distinguish Pure Good nodes
early in the classification process that have utility for invari-
ant generation. In contrast, the reward metric employed
by Binary Fission clearly influenced players to isolate Pure
Good nodes at shallower depths, with the associated benefit
for explaining good program states. This pattern repeated
across TCAS problems.

We also tested the expressive power of the primitive Bi-
nary Fission predicates by invoking the greedy classification
algorithm without a depth limit. The result here, and in all
7 TCAS problems, was that the predicates had the power to
correctly separate all good program and bad program states.
As a result, our statistics on Binary Fission solutions con-
cern the performance of the crowd, not the expressivity of

Figure 9: Crowd progress in classifying data points
from Non_Crossing_Biased_Descend

the predicates at their disposal.

6.3 Program Preconditions Found
We tested the likely invariants generated for Non Cross-

ing Biased Descend using the CBMC model checker as dis-
cussed in Section 4.4. Of the 398 clauses supplied by play-
ers, 16 qualified as program preconditions. That is, if any
of these preconditions hold on function entry, the postcon-
ditions described in Table 1 hold at program exit. Figure 10
lists the three most general preconditions found, ordered
by their coverage over the test set of good program states.
These are the first instances of program invariants found by



(not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value])

(Other_Tracked_Alt > Positive_RA_Alt_Thresh[Other_Capability])
and (Down_Separation >= Up_Separation)
and (not(Up_Separation <= Positive_RA_Alt_Thresh[Alt_Layer_Value]))
and (Other_Tracked_Alt > Own_Tracked_Alt)

(not(Other_Capability == 2))
and (not((Down_Separation == 800) or (Down_Separation == 600)

or (Down_Separation == 500)))
and (Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value])
and (not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value])

Figure 10: The three best crowdsourced preconditions found.

Clauses Precon-
Function from BF ditions
ALIM 422 45
alt sep test 462 103
Inhibit Biased Climb 262 7
Non Crossing Biased Climb 360 14
Non Crossing Biased Descend 398 16
Own Above Threat 500 0
Own Below Threat 704 6

Table 2: Quantity of Crowdsourced Preconditions
and Likely Invariants: A fraction of the likely in-
variants qualify as program preconditions.

crowdsourced methods. As with the likely invariants, these
preconditions are non-trivial statements about domain vari-
ables, here relating the positions and capabilities of aircraft
in the sky. For example, the first/best precondition in Fig-
ure 10 states that advising a pilot to descend (the function
of Non Crossing Biased Descend) will satisfy safety asser-
tions when (a) the other plane’s altitude is higher, but (b)
advising the pilot to climb will result in a vertical separation
(up separation) that is less than the required tolerance.

Binary Fission players collectively found program precon-
ditions for 6 of the 7 TCAS tasks. None were trivial. Table 2
identifies the quantity of preconditions found for each task,
and the numbers are substantial.

6.4 Invariant Generality
Following the methodology described in Section 4.5, we as-

sess the generality of the crowdsourced preconditions found
by measuring their coverage over good program states in
the test set. Table 3 counts the number of program states
explained by for the seven TCAS problems. The best-case
scenario is for the precondition to accept all good states. In
the case of Non Crossing Biased Descend, the aggregate pre-
condition (composed of the 16 clauses reported in Table 2)
explains 36.6% of the good program states withheld dur-
ing the classification task. This corresponds to 2.3% of the
good states per precondition clause on average, although the
distribution was uneven. Figure 10 shows the best three pre-
conditions for this problem. The first explained 20% of the
data, while the second and third best preconditions captured
14% and 9% of the program states in the test set respec-
tively. The net result is that the crowd discovers multiple
program preconditions with noteworthy coverage/generality.

Good Total
Function states states %
ALIM 51 95 53.7%
alt sep test 424 2000 21.2%
Inhibit Biased Climb 59 295 20.0%
Non Crossing Biased Climb 60 295 20.3%
Non Crossing Biased Descend 108 295 36.6%
Own Above Threat 0 161 0%
Own Below Threat 0 185 0%

Table 3: Testing preconditionsÕ generality by com-
paring the number of good states accepted versus
the total number of good states in the held-out test
set.

6.5 Novelty Relative to the DTinv Solution
As discussed in Section 4.6, we compare the Binary Fis-

sion and DTinv solutions for each TCAS problem in order
to examine the conjecture that the crowd provides novel in-
sight in the search for program invariants. We compare the
legibility and coverage of the likely invariants they produce,
as well as their ability to discover program preconditions.

In its raw form, the DTinv solution for Non Crossing Bi-
ased Descend is a depth 15 decision tree containing 65 prim-
itive predicates that completely segments the good and bad
program states. The corresponding logical expression is not
human readable (nor was it intended to be). We converted
this form to DNF to extract less monolithic likely invariants,
and show the top three clauses (as measured by the number
of Good states covered) in Figure 11.

It is immediately obvious that these expressions rely heav-
ily on numeric thresholds. This is by design, as DTinv’s
primitive predicates represent planar cuts in the octagon
domain. Although it is an aesthetic judgment, this design
appears to make the DTinv statements harder to interpret
than the Binary Fission output in Figure 8.

Of the three DTinv expressions in Figure 11, the second
overlaps the first, and the third is a specialization of the
second. They cover 29%, 16%, and 11% of the Good pro-
gram states, respectively. It is worth noticing that the single
best likely invariant found by crowdsourcing (Figure 8) and
the DTinv classifier have essentially identical capture, and
that the top three employ the same variable set, though in
notably di↵erent formulas. This is an indication that both
systems are after similar insights.

We tested the DTinv solution for Non Crossing Biased
Descend using the CBMC model checker to determine if



(not(2*Positive_RA_Alt_Thresh[0] + 2*Down_Separation <= 1472))
and (2*Up_Separation -2*Alt_Layer_Value <= 801)
and (2*Alt_Layer_Value -2*Down_Separation <= -799)
and (2*Alt_Layer_Value + 2*Two_of_Three_Reports_Valid <= 9)

(not(2*Positive_RA_Alt_Thresh[0] + 2*Down_Separation <= 1472))
and (not(2*Up_Separation -2*Alt_Layer_Value <= 801))
and (not(2*Up_Separation -2*Down_Separation <= -1))
and (not(2*Own_Tracked_Alt -2*Other_Tracked_Alt <= -1203))
and (not(2*Own_Tracked_Alt_Rate + 2*Up_Separation <= 1594))
and (2*Alt_Layer_Value + 2*Other_Capability <= 5)

(not(2*Positive_RA_Alt_Thresh[0] + 2*Down_Separation <= 1472))
and (not(2*Up_Separation -2*Alt_Layer_Value <= 801))
and (not(2*Up_Separation -2*Down_Separation <= -1))
and (not(2*Own_Tracked_Alt -2*Other_Tracked_Alt <= -1203))
and (not(2*Own_Tracked_Alt_Rate + 2*Up_Separation <= 1594))
and (not(2*Alt_Layer_Value + 2*Other_Capability <= 5))
and (2*Other_Tracked_Alt -2*Down_Separation <= 95)
and (not(2*Two_of_Three_Reports_Valid + -2*Positive_RA_Alt_Thresh[3] <= -1481))
and (not(2*Cur_Vertical_Sep + 2*Other_Tracked_Alt <= 1906))

Figure 11: The top three DTinv likely invariants.

it contained valid program preconditions. The surprising
conclusion is that it did not, either as a whole, or when
we tested individual DNF clauses. This pattern repeated
across all seven TCAS problems; none of the DTinv solutions
contained valid preconditions. In contrast, the crowd, acting
through Binary Fission, produced preconditions for 6 of the
7 TCAS problems. As a result, the crowdsourced solutions
are clearly novel relative to the DTinv output.

The cause for the lack of DTinv-based preconditions ap-
pears to be overfitting; numeric thresholds induced from
data are highly likely to break in the presence of a hold-
back set, and the lengthy expressions DTinv discovers to
explain all the training data have limited opportunity to
generalize. In contrast, the more abstract predicate base
and 5 conjunct limit imposed by Binary Fission essentially
forces players to paint with a broader brush. Players can
only produce shorter, more powerful statements, some of
which generalize, as shown above.

7. DISCUSSION
This paper has addressed the problem of crowdsourcing

program preconditions, under the model that crowdsourc-
ing o↵ers an alternate, and viable method for addressing a
di�cult task. We have provided an existence proof in the
form of the Binary Fission game, and we have shown that
crowdsourcing is e↵ective by employing the game to discover
program preconditions for 6 TCAS problems. The precon-
ditions are non-trivial, reasonably general (as measured by
data coverage on a test set), and human readable. They are
also novel with respect to the output of DTinv, which finds
likely invariants, but none that qualify as program precon-
ditions on TCAS problems.

There are three sources of power behind Binary Fission: it
employs an expressive representation, it relies on the crowd
to conduct a thorough search, and the game imposes re-
strictions on that search that select for general solutions. In
more detail, the representational power comes from Daikon,
as Binary Fission inputs the highly structured predicates it
produces. The game exploits crowd search by collecting and
testing the large number of piecewise solutions that players
contribute. The game influences the shape of the solution by

limiting classifier depth, and by rewarding discovery of par-
tial classifiers that isolate positive data, which has special
utility for invariant construction.

While Binary Fission employs a classification model, im-
proving classification technology is not our goal. Our main
point is to introduce crowdsourcing as a promising approach
to invariant discovery. From this perspective, the key con-
jecture behind crowdsourcing is that many non-expert in-
dividuals have the desire and ability to provide insight into
highly technical problems when they are presented in a suit-
able form. This conjecture holds for Binary Fission. If it
generalizes, related games will provide leverage on additional
verification tasks, and crowdsourcing will o↵er an avenue for
expanding the reach of verification technology.

More broadly, Binary Fission suggests that other highly
technical tasks will be amenable to crowd-sourced science
games. From our experience, the enabling factor is the use
of a very clean mechanic for game play (here, classification
tree learning).

8. THREATS TO VALIDITY
This paper reports first results from a crowdsourced ap-

proach to precondition discovery. As mentioned above, the
key points are that crowdsourcing is feasible, e↵ective, and
promising as a practical avenue for expanding the reach of
verification methods. That said, there are several threats
to the validity of these claims, as well as our more detailed
results.

First, while crowdsourcing finds preconditions on TCAS,
the approach may not generalize to more complex programs.
In particular, TCAS is a short, straight line, arithmetic pro-
gram that lacks pointers, loops, complex data structures,
and a range of other language features that complicate the
verification task. The counterpoint is that Binary Fission
is agnostic to the structure of the underlying program, be-
cause it formulates precondition discovery as classification.
The limits on its use come from the need for inputs common
to classifiers; a base of relevant primitive predicates, and la-
beled data distinguishing bad program states from good. It
is true that these inputs are hard to provide for more com-
plex programs (especially the predicate base and assertion



violating program states) as they are the product of deep
analyses of program structure. However, Binary Fission is
also agnostic as to the source of these data, which greatly
increases its avenues for application.

Second, our results on the novelty of the Binary Fission
solution could be the product of our choice of DTinv as the
comparator. This is quite plausible; the likely invariants
produced by other machine learning methods might qual-
ify as preconditions. However, our experience with Binary
Fission has illuminated constraints that should be applied
to the use of classifiers for this task; they should penalize
solution size (which is common wisdom), employ a powerful
predicate base to support human legibility of the end result,
and reward identification of pure good nodes rather than
focus on an entropic measure as the splitting criterion.

A third concern is that our use of crowdsourced classifi-
cation could be replaced by a suitable automated method.
This issue reduces to the underlying question, “What does
the crowd bring to classification that is di�cult to auto-
mate?”. Here, the core property is novelty; we have shown
that the crowd discovers program invariants that DTinv is
unable to find, and that it does so by employing non-greedy
search and by imposing constraints on the form of the so-
lution. With su�cient implementation e↵ort, that strategy
might be automated - it might require a mixture of random
forest techniques to approximate crowd search, and a highly
non-linear scoring function, like Binary Fission’s, which is
di�cult to optimize. The required mechanism is non-trivial.

More broadly, the purpose of a crowdsourced science game
like Binary Fission is to unleash human insight to solve a
hard technical problem. That value can be present even
in tasks that are well-characterized as search. For exam-
ple, FoldIt [4] lets players employ their spatial intuition to
determine the shape of complex proteins. The game has
obtained results never achieved in 30+ years of research
based on search over molecular conformations in combina-
tion with energy minimization methods. Precondition dis-
covery is equally hard, and the task has a natural framing
as classification search. In this context, the crowd may in-
tuit which predicates to employ en route to a more general
solution (where predicate invention is a major component
of precondition discovery as conducted by human experts).
Binary Fission currently hides a bit too much information to
support this type of player intuition (a design choice made in
service of broadening the game’s appeal), but advanced ver-
sions will provide more context about the underlying task,
and more leverage for predicate selection.

A final, and related argument is that Binary Fission ad-
dresses the wrong crowdsourcing problem. Rather than ask
the crowd to combine primitive predicates, we should un-
leash them on the task of inventing the predicates them-
selves. This step seems natural as predicate invention (in-
cluding predicate abstraction from data) is a critical, but
elusive process currently performed by people. We have, in
fact, developed a game for this task, called Xylem [18], and
it is available on-line at xylem.verigames.com.

9. CONCLUSION
We have employed Binary Fission, a crowdsourced game

for invariant discovery, to analyze the implementation of an
on-board aircraft collision detection and avoidance system.
We have shown that the crowd can employ Binary Fission
to prove program properties. They find function precondi-

tions (statements about program variables associated with
function inputs) that guarantee important safety properties
hold on program exit, where those properties are encoded
as postconditions. Binary Fission players discover concise,
general, and human readable preconditions, which are also
novel relative to the complicated logical expressions often
produced by other classifications systems. The players have
no special expertise in formal methods or programming, and
are not specifically aware they are solving verification tasks.

Binary Fission demonstrates the feasibility of crowdsourced
invariant discovery, and it illustrates the promise of crowd-
sourcing for other verification tasks. This suggests a path-
way for expanding the reach, and practical application of
verification technology.
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