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Abstract. A piece of code in a computer program is infeasible if it
cannot be part of any normally-terminating execution of the program.
We develop an algorithm for the automatic detection of all infeasible code
in a program. We first translate the task of determining all infeasible
code into the problem of finding all statements that can be covered by a
feasible path. We prove that in order to identify all coverable statements,
it is sufficient to find all coverable statements within a certain minimal
subset. For this, our algorithm repeatedly queries an oracle, asking for
the infeasibility of specific sets of control-flow paths.
We present a sound implementation of the proposed algorithm on top
of the Boogie program verifier utilizing a theorem prover to provide the
oracle required by the algorithm. We show experimentally a drastic de-
crease in the number of theorem prover queries compared to existing
approaches, resulting in an overall speedup of the entire computation.

1 Introduction

Static analysis allows us to detect undesired behavior of a program before it is ex-
ecuted or even compiled. A particular application of static analysis is to identify
code fragments that show only undesired behavior. Tools implementing this ap-
proach detect code which is never part of an execution that terminates normally.
We refer to this type of code as infeasible code. The terminology infeasible code
is justified as follows: an execution is infeasible if it does not terminate normally
(note that we do not model error states and thus, any terminating execution
terminates normally). A path is infeasible if all its executions are infeasible. And
code is infeasible if it only occurs on infeasible paths. Compared to unreach-
able code, where no feasible path ends in the considered code, infeasible code
is a more general concept as it only requires that no feasible path contains the
considered code.

Subsets of infeasible code are, for example, found by the static analyzers in
modern development environments such as Eclipse. These tools detect simple, yet
common errors such as guaranteed null pointer dereference, use of uninitialized
variables, or unreachable program fragments. In practice, finding such type of
errors is one of the most frequent applications of static analysis. Thus, improving
the detection of infeasible code is a worthwhile problem.

An intriguing property of infeasible code is that it can be detected without
prior knowledge of the desired program behavior or it’s environment (e.g., the
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possible input values). If a piece of code is infeasible, it will stay infeasible even
if the context is subsequently restricted by other means such as adding guarding
statements or specifying admissible input values. Thus, infeasible code can be
detected while typing the program, and infeasible code can only be eliminated
by changing the code fragment itself and not by changing other code.

Recently, new static analysis approaches have emerged that use formal meth-
ods to prove the presence of infeasible code [11,14]. They prove a particular pro-
gram statement to be infeasible code by encoding all paths passing through the
statement in a logic formula. The formula is satisfiable if there exists a normally
terminating execution of the program following one of these paths. The benefit
of proving the presence of infeasible code with this approach is that it does not
produce false warnings [12].

To detect all infeasible code in a program, this method is repeatedly ap-
plied to different program statements. Each application invokes a theorem prover
query and is thus computationally expensive. It is possible to query the infea-
sibility of several statements simultaneously, in order to reduce the number of
queries. Minimizing the number of queries can help us to devise more efficient
ways to process the entire code, however, using more complex queries may be
computationally more expensive. Thus the following question arises:

What is an efficient strategy to detect all

infeasible statements in a given program?

In this paper, we show that the problem of identifying all infeasible code can be
expressed as a set cover problem on a minimal subset of program statements.
We then show that the problem of detecting infeasible code is equivalent to
proving the non-existence of a feasible path cover for this subset of statements
in the control-flow graph of the program. We further show that a feasible path
cover of this set covers all feasible statements in the program. This in particular
shows how the feasibility or infeasibility of every statements can be determined
from the feasibility information on the subset of statements. We present a query
optimal greedy algorithm to compute a feasible path cover and a sound imple-
mentation. The implementation uses a theorem prover (we use Z3 [6]) as an
oracle to check the existence of a feasible control-flow path in a particular set.
We show experimentally that the proposed method is more efficient in terms of
oracle calls and computation time than existing approaches.

Related Work. Numerous approaches exist that, among other things, show in-
feasible code to be faulty. E.g., when a test case executes infeasible code it must
reveal an error. Many of these approaches suffer from false warnings or require a
strong user interaction (e.g., [8,19]). Moreover, the approaches do not prove code
to be infeasible. We restrict the discussion to static error detection approaches
that detect statements from which a good state is unreachable. Findbugs [13]
detects contradicting control-flow using pattern matching. It detects statements
similar to infeasible code, however, pattern matching is neither sound nor com-
plete.
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Encoding the feasibility of control-flow paths as a logic formula goes back to
the idea of predicate transformers [7]. An algorithm that uses formal methods
to prove that a statement cannot be reached by a feasible execution is presented
in [14]. Unreachable code is a special type of infeasible code. An algorithm to
detect if a particular control location is never passed by a feasible execution
is developed in [11]. They query a theorem prover whether there exists some
feasible path containing a particular location. Their approach detects doomed
locations while our approach detects infeasible statements. By inserting auxiliary
locations, the two approaches can be reduced to each other. However, one of the
central insights of this paper is that, in order to find all statements occurring on
feasible paths, it is in general not sufficient to check only control locations.

In [12] the algorithm from [11] is extended to an algorithm that detects
all such locations. They present a strategy to minimize the number of theorem
prover queries to detect infeasible code on a loop-free abstraction of the program.
In this paper, we present a more general type of query. This type of query
allows us to check infeasibility of several statements simultaneously. Moreover,
we prove that it is possible to determine all infeasible statements by only checking
a minimal subset of all statements. Without the use of auxiliary locations, our
proof cannot be translated to suit the approach using locations. Any direct proof
for program locations seems to require further properties of the program. We
show our approach, which also works for programs with loops, further reduces
the number of queries and prove that our approach is query optimal.

Algorithms to compute feasible path covers or sets of infeasible control-flow
paths have been proposed in software testing (e.g. [4]). These approaches either
require an executable program, or over-approximate the feasible path cover.

Organization of the paper. In Section 2 we give some examples of infeasible code.
In Section 3 we formalize the notion of infeasible code and show that it’s detec-
tion can be expressed as a path cover problem. In Section 4 we then present an
algorithm to check the existence of a feasible path cover of a control-flow graph
that uses an oracle to check if a given set of paths is infeasible. In Section 5 we
show how this oracle can be realized using weakest liberal preconditions. In Sec-
tion 6 we present a prototype implementation of our algorithm and in Section 7
we experimentally compare this implementation with existing implementations
in terms of theorem prover calls and computation time.

2 Examples of Infeasible Code

Figure 1 provides 4 example programs that demonstrate the usefulness of infea-
sible code detection. In ex01, line 3 is infeasible because any execution passing
that line will loop forever. This example shows that infeasible code also refers
to code that does neither reach a normal terminating state nor violates an as-
sertion. However, infeasible code detection only detects non-termination if any
execution entering the loop must run forever.

The program ex02 has infeasible code in line 3. It shows that code can
be infeasible because its execution always causes an error at some later stage.
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1 void ex01 (int x) {

2 while (x >0) {

3 x=(x/2) +1;

4 }

5 }

1 void ex02 (C a, int x) {

2 if (a== null )

3 x=-1;

4 a.toString ();

5 }

1 void ex03 () {

2 int a, b;

3 a=1;

4 if (a >0) b=1;

5 a=b;

6 }

1 void ex04 (C a) {

2 int y=0;

3 if (a!= null )

4 y=1;

5 if (y==0)

6 a.toString ();

7 }

Fig. 1. The example programs show different possible causes for code to become
infeasible.

Indeed, on any execution passing line 3, the reference a is guaranteed to be
null and thus, the program terminates abnormally in line 4. Note that the only
infeasible statement in this program is line 3. All other statements are part of
feasible executions.

In practice, we use automatically generated assertions to guard pointer deref-
erences and other properties. In general, the approach presented in this paper
can be used with arbitrary safety properties. E.g., we can use infeasible code
detection for definite-assignment analysis and encode the property that every
variable must be written once before it is read by using helper variables and
assertions. To this end, we can show that in ex03, the variable b is initialized on
any feasible path. In contrast, the Java compiler rejects this program claiming
b might be not initialized if a is not positive at line 4. We can encode other
properties, such as array-bound checking, or locking behavior in the same way.

A more complex example of infeasible code is given in ex04. Any path con-
taining line 6 is either infeasible because the conditional evaluates to false, or
null is dereferenced. For code to be infeasible, it is not necessary that all paths
are infeasible for the same reason or diverge at the same control location.

3 Infeasible Code, Effectual Sets, and Path Covers

A program is defined by a control-flow graph P = (S, δ,Σ). A control-flow graph
is a connected directed graph where S is the set of control locations and Σ is
the set of instructions in the program. A program statement st = (s, inst, s′) ∈ δ

is an instruction inst ∈ Σ at a control-location s whose execution ends in a
control-location s′. The transition relation δ ⊆ S × Σ × S represents the set of
statements in P . W.l.o.g., we assume that the program has a unique source and
a unique sink node. A path from a node s1 to a node sk+1 in P is a sequence of
statements π = st1 . . . stk = (s1, inst1, s2) . . . (sk, instk, sk+1), s.t. st1, . . . , stk ∈ δ.
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Note that, as customary in the context of control flow graphs, a path may use
vertices repeatedly. A complete path is a path that starts in the source node
and ends in the sink node of the graph. Throughout this paper, unless stated
otherwise, the word path always refers to a complete path.

Infeasibility. We assume that the semantics of a statement st is given by a weak-
est liberal precondition operator P = wlp(st,Q), s.t. any execution of st starting
in a state satisfying P results in a state satisfying Q or does not terminate nor-
mally [7]. We say an execution does not terminate normally if it blocks, either
because a conditional statement is not satisfied or it crashes because an (possibly
implicitly) assertion is violated, or it runs forever. We extend the weakest liberal
precondition from statements to paths in the obvious way.

Definition 1. Given a program P = (S, δ,Σ), a path π in P is infeasible if

wlp(π, false) = true.

Here, true denotes the set of all possible states and false the empty set of states.
Note that we do not take into account the reason for paths being infeasible. We
are only interested in the fact that their executions do not terminate normally.

In general, not every control-flow path in a genuine program is feasible. E.g.,
control-flow paths may be infeasible because of complex conditional branching.
Only if a statement is not part of any feasible execution we call it infeasible code.

Definition 2. Given a program P = (S, δ,Σ), a statement st ∈ δ is infeasible

code, if there is no feasible path π in P that contains st.

There are two reasons why a statement can be infeasible code. One is that it
is not part of any (terminating) execution, the other is that it is only part of
executions that terminate in an error state.

Effectual sets. For the detection of infeasible code, it is not necessary to consider
all edges (statements) in a control-flow graph. It suffices to focus on a minimal
subset of edges of which each control-flow path contains at least one. As shown
in [3,12], this set can be identified using a partial order over control-flow edges.
The minimal subset can be used to decide whether there is infeasible code.
However, for our purpose of determining all infeasible code, there are examples
of control flow graphs where these sets are not sufficient (see [2] for an example).

Definition 3. Given a program P and two statements st, st′ ∈ δ, we write st �
st′ if every complete or infinite path π in P that contains st also contains st′.

We remark that in acyclic graphs the defined relation coincides with the one
used in [12]. The relation � is reflexive and transitive, therefore the relation
≃=� ∩ �−1 is an equivalence relation. We denote by [st] the equivalence class
of a statement st under ≃. We say that [st] � [st′] if and only if st � st′.

For a set δ′ ⊆ δ we define cov(δ′) to be the maximal number of elements of δ′

contained in a (not-necessarily feasible) path.
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We call a set δ′ ⊆ δ effectual if it is a maximal set of statements that are all
minimal w.r.t. �, such that for any two distinct statements st, st′ ∈ δ′ we have
st 6∈ [st′]. We will usually denote effectual sets by F(δ).

Path covers. A path cover of the program P = (S, δ,Σ) is a set of paths such
that each statement in δ is contained in at least one of the paths. A path cover
is feasible if it contains only feasible paths. Path covers and effectual sets are
the key element to our method of determining infeasible code.

Theorem 1. Let P = (S, δ,Σ) be a program and F(δ) ⊆ δ an effectual set.

Program P has no infeasible code, if and only if there is a feasible path cover

of F(δ).

Proof. ”⇒”: If P has no infeasible code, every statement st ∈ δ is part of some
feasible path πst. The set

⋃
st∈F(δ) πst is a feasible path cover of F(δ) .

”⇐”: suppose there is a feasible path cover of F(δ). Let st ∈ δ be a statement.
Since F(δ) is maximal, there is a statement st′ ∈ F(δ) such that st′ � st. Since
there is a feasible path cover of F(δ), there is a feasible path that contains st′.
Since st′ � st this path also contains st. Thus every statement is contained in
some feasible path and P has no infeasible code. ⊓⊔

The theorem shows that the problem of detecting infeasible code can be
understood as a path cover problem on an effectual set. By definition, the code
of two equivalent statements st ≃ st′ is either for both infeasible or for neither.
Thus, from knowing for each statement in an effectual set whether it is infeasible
code, we can easily identify all minimal statements that are infeasible code. In
the following we show that in reducible control flow graphs we can even identify
all infeasible code. A control flow graph is reducible if removing all its back
edges yields an acyclic graph. Recall that any path that contains a back edge
has a loop that contains the back edge. We first show this for acyclic control
flow graphs.

Lemma 1. Let P = (S, δ,Σ) be an acyclic program. A statement st ∈ δ is

infeasible code, if and only if every statement st′ which is minimal with respect

to � and for which st′ � st holds is infeasible.

Proof. If there is a feasible statement st′ with st′ � st, there exists a feasible path
which contains st′ and therefore also contains st. Thus, st is feasible.

To show the other direction, we define a statement st to be bad if every
minimal element st′ with st′ � st is infeasible but st itself is feasible. We need to
show that there are no bad statements. For the sake of contradiction, suppose st
is a bad statement that is minimal among all bad statements. Let st1 be some
minimal element with st1 � st. By our assumption st1 is infeasible. Let π1 be an
infeasible path that contains st1 and therefore necessarily also contains st, see
Figure 2. W.l.o.g. we assume that when traversing π1 from the source to the sink
we first encounter st and then encounter st1 (otherwise we invert the directions of
all edges). Since st is feasible, there is a feasible path π2 that contains st. Since π2
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Fig. 2. The elements used in the proof of Lemma 1.

does not contain st1, after passing through st it must leave the path π1 before
reaching st1. Let st2 be the first edge on π2 encountered after passing st that is
not on π1. We now show that st2 � st. Suppose this is not the case, then there is
a path π3 that contains st2 but not st. We construct a path that contains st1 but
not st giving a contradiction: This path is obtained by starting along the path π3

up to the starting vertex of the edge st2 and then following π1 until the end. This
path cannot exist, therefore we conclude st2 � st. We have st � st2, since there
is a path, namely π1, that contains st but not st2. Finally note that st2 is bad
since it is feasible and has the property that all statements st′ with st′ � st2 in
particular fulfill st′ � st and are thus infeasible. This is a contradiction to our
minimal choice of a bad statement st and shows the theorem. ⊓⊔

For the curious reader, we remark that there is no equivalent theorem for the
case of path-vertex covers (see [2] for an example). We now extend the lemma
from acyclic graphs to reducible graphs.

Theorem 2. Let P = (S, δ,Σ) be a program with a reducible control flow graph.

1. A statement st ∈ δ is infeasible code, if and only if every statement st′ which

is minimal with respect to � and for which st′ � st holds is infeasible.

2. If a set of feasible paths covers all feasible statements within an effectual

set F(δ), then the set of paths covers all feasible statements.

Proof. (Part 1). Given a reducible control flow graph P let P ′ be the graph
obtained by redirecting all endpoints of back edges into the sink. Since P is
reducible, P ′ is acyclic. Abusing terminology, for a back edge st in P , we refer
to the redirected back edge in P ′ also as st.

Claim: For statements st, st′ we have st′ � st in P if and only if st′ � st

in P ′. To see the claim it suffices to observe that for every complete or infinite
path π in one of the programs P or P ′ that uses a set of statements δ′ there is
a complete or infinite path π′ in the other program that uses a (not necessarily
strict) subset δ′′ ⊆ δ′ of the statements. For a path π in P this is easy to see. We
now show this for a path π in P ′. Let δ′ be the set of statements on the path π.
First note that π is finite since P ′ is acyclic. If the last edge of π does not
correspond to a back edge in P then π is also a complete path in P . Otherwise,
if the last edge of π is a back edge in P then this edge closes a loop. By repeating
this loop indefinitely, we obtain a path whose set of statements is the same as
that of π. Either way, we obtain a path in P with the desired properties, showing
the claim.

7



In P ′ we define a complete path to be feasible if its projection to P is a
subgraph of some (complete) feasible path of P . With this definition, a state-
ment st is feasible in P if and only if it is feasible in P ′. Moreover, having now
an acyclic control flow graph, Theorem 2 applies. Since feasibility of a statement
and the “�” relation are equivalent in P and P ′, Part 1 of the theorem follows.
(Part 2). To show Part 2 of the theorem let st be feasible code. Then, by the first
part of the theorem, there is a minimal element st′ � st that is feasible code. Any
path cover that covers all feasible statements in an effectual set F(δ) covers st′.
A path that contains st′ also contains st and the theorem follows. ⊓⊔

The proof of the theorem also provides us with a method to compute the
relation “�”: Indeed, to compute the relation� of a program P we first construct
the acyclic program P ′ obtained by redirecting back edges into the sink. Since
the relation � described in [12] then coincides with the relation defined in this
paper, we can then apply the method described in [12] for the computation of �.

To make use of the connection between infeasible code, effectual sets, and
path covers, we first design an efficient path cover algorithm.

4 A Path Cover Algorithm

In this section we describe an algorithm that finds a feasible path cover for a
given reducible control flow graph. The feasible paths are not given explicitly.
We rather assume an oracle answers queries from which we can infer which edges
of the graph are coverable by some feasible path. Intuitively, we need to optimize
our query strategy towards a method that quickly dismisses large portions of the
graph as coverable, allowing us to focus on edges that are uncoverable.

Abstractly we have the following model: We are given a control-flow graph P
and repeatedly query for the non-existence of a feasible path with certain prop-
erties. We assume an oracle is available that provides us with an answer that
either proves that no feasible path with the desired properties exists, or with a
counterexample in form of a feasible path that possesses the required properties.

In more detail, the oracle answers the following type of query: For a specified
set of nodes δ′, and specified positive integers ℓ, k ∈ N with ℓ ≤ k, does no

feasible path exist that contains at least ℓ, and at most k elements of δ′? We
assume this Constrained Path Infeasibility query is answered by a call to the
function CPI(δ′, ℓ, k). In Sections 5 and 6 we explain why we use specifically
queries of this type and how to realize an oracle that answers them.

Being able to query for a path that contains at least a certain number of edges
from a specified subset allows us to adapt the greedy algorithm to our scenario.
The standard greedy algorithm for the set cover problem repeatedly chooses a
set that covers a maximal number of previously uncovered elements. A classic
result by Johnson [15] shows this algorithm to be an O(log(n)) approximation in
terms of the number of sets used, and this is best possible, unless P = NP [18].

Description of the algorithm. The path cover algorithm PCA (Algorithm 1) takes
as input a reducible control flow graph and outputs a set of feasible paths that
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Algorithm 1 Path Cover Algorithm PCA

Input: P = (S, δ,Σ): A reducible control flow graph.
Output: A set of feasible paths that cover all feasible code of P .

compute an effectual set F(δ)
k ← cov(F(δ))
δ′ ← F(δ)
while δ′ 6= {} do

5: k ← min{k, cov(δ′)}
query CPI(δ′, ⌈k/2⌉, k)
if the query returned a path π then

let E(π) be the statements on the path π
δ′ ← δ′ \E(π)

10: else

if k = 1 then

return all paths that were reported by queries
else

k ← ⌊k/2⌋
15: end if

end if

end while

return all paths that were reported by queries

cover all feasible code. The algorithm starts by computing an effectual set F(δ).
It maintains a subset δ′ of F(δ) which at any point in time contains all elements
of F(δ) that cannot be covered by a feasible path. It repeatedly queries the
oracle, and if returned a path, removes the statements on that path from δ′. The
algorithm also maintains an integer k which is an upper bound on the number
of statements in δ′ that may lie simultaneously on a feasible path.

Theorem 3. Let P = (S, δ,Σ) be a program with a reducible control flow graph

that has a unique sink, a unique source, and an unknown set of feasible paths.

Let F(δ) be an effectual set. Algorithm 1 returns a set of feasible paths that

covers all feasible code of P. If K is the size of the smallest set of feasible

paths that covers all coverable elements in F(δ), then Algorithm 1 performs at

most O(K · log(cov(F(δ)))) queries.

A proof of Theorem 3 is given in the extended version of this paper [2]. As
mentioned previously, the set cover problem cannot be approximated with an
approximation ratio of o(log(n)) unless P = NP [18]. In our algorithm we made
use of the parameter cov(F(δ)) to get a finer analysis of the number of queries.

In general every set cover problem can be modeled as a path cover problem
on a graph with unique sink and unique source: Indeed, by taking the tran-
sitive closure of a directed path, any subset of the edges of the original path
can be chosen to be simultaneously on a feasible path. The inapproximability
result thus applies to our path cover problem as well, and in this sense our al-
gorithm is optimal with respect to the number of queries. However, control-flow
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graphs are not arbitrary graphs, and it might be possible to improve beyond the
inapproximability ratio by using properties inherent to control-flow graphs.

5 Checking Constrained Path Infeasibility

In this section we explain how to construct the oracle CPI(δ′, ℓ, k) that checks
for a program P = (S, δ,Σ) whether there exists no feasible control-flow path π

that contains at least ℓ and at most k statements in δ′ ⊆ δ. The call CPI returns
such a feasible path π if it exists, otherwise it returns the empty path. We first
devise a technique that allows us to modify any program so that this type of
query can be answered. In particular with our modification, each query translates
into a formula whose validity is equivalent to the non-existence of such a path.
We use the concept of reachability variables introduced in [11] to monitor which
statements are involved in an execution of a program P .

So far, our approach is independent of a particular programming language.
In the following, we require that our programming language is expressive enough
to support variables with numeric types and assignment statements.

Let P = (S, δ,Σ) be a program and δ′ ⊆ δ. For each statement st ∈ δ′,
we create an auxiliary reachability variable rst in P which is initially zero. We
replace a statement st ∈ δ′ by the sequence rst := 1; st. That is, every time st is
executed rst is assigned to one. Thus, after the execution of a path π in P the
sum

∑
st∈δ′

rst is the total number of statements in δ′ that occur on π.
Having introduced the reachability variables, the existence of a feasible path

with at least ℓ and at most k statements from δ′ in a program P can be checked
using the weakest liberal precondition wlp of P and the postcondition ¬(ℓ ≤∑

st∈δ′
rst ≤ k) . This leads to the following theorem:

Theorem 4. Let P = (S, δ,Σ) be a program, δ′ ⊆ δ a set and ℓ, k integers with

1 ≤ ℓ ≤ k ≤ |δ′|. The program P has no feasible path π, s.t. π contains at least

ℓ and at most k statements from δ′ if and only if the formula

CPI(δ′, ℓ, k) := wlp(P ,¬(ℓ ≤ (
∑

st∈δ′

rst) ≤ k))

is universally valid in the program augmented with reachability variables.

A proof of Theorem 4 is given in the extended version of this paper [2].
In principle, we could design the query function CPI to work for arbitrarily
complicated properties that are based on the reachability variables. In particular
for any first order formula over the reachability variables we can obtain a theorem
analogous to the one just presented. However, for actual implementations of the
oracle, the complexity of the queries may alter the query response time, as we
show in our experiments in Section 7. Our choice of query type is motivated
by the fact that linear inequalities in practice can be handled well by theorem
provers, and that this type of query suffices to construct an algorithm that is
optimal with respect to the number of queries.

Up to this point neither the algorithm PCA nor the realization of CPI

perform any abstraction. That is:
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Lemma 2. Given a sound, complete implementation of CPI, algorithm PCA

is a sound and complete method to detect all infeasible code in a program.

The proof of Lemma 2 follows directly from Theorem 3 and 4. However, an
implementation of CPI needs to compute the weakest liberal precondition of a
program, which is an undecidable problem in general. We will thus not be able to
design an implementation of CPI which makes algorithm PCA simultaneously
sound and complete. In the following, we describe a sound implementation of
PCA which uses a sound wlp computation presented in [11].

6 Implementation

We now describe our implementation of a sound tool that detects infeasible
code. Our implementation takes a Boogie program [16] as input, augments it
with reachability variables, then applies the algorithm described in Section 4 and
returns a subset of the infeasible statements of the program. We implement the
constrained path infeasibility queries CPI using the sound over-approximation of
the weakest liberal precondition presented in [11]. Soundness, in this case, means
that for any path that has a feasible execution in the original program, there is
a corresponding path with a feasible execution in the abstract program. If our
translation were not sound, we might report infeasible paths that have feasible
executions in the original program. We stress that this notion of soundness is
dual to the notion of soundness used in verification.

Computing a formula representation of an over-approximation of the weakest
(liberal) precondition of a program is a common technique [9, 10, 12, 14, 17]. It
involves two steps: 1.) compute a loop-free abstraction of the input program, 2.)
compute a formula representation of the weakest (liberal) precondition of the
loop-free program.

Compute a loop-free abstraction. Given a Boogie program, we use the abstract
loop unrolling presented in [12]. Loops are unrolled three times. The first un-
rolling represents the first iteration of the loop. The third unrolling represents
the last iteration of the loop. Any other iteration is represented by the second,
abstract unrolling. To retain soundness of the abstraction, non-deterministic as-
signments to all variables modified by the loop are added before and after the
abstract unrolling. This abstraction is sound as it preserves the set of feasible
executions of the original program. A proof of soundness is given in [12].

Compute weakest liberal precondition. For the loop-free program we perform a
single-assignment transformation (e.g., [5]). We introduce an auxiliary variable
for each assignment statement such that each variable is only written once. The
resulting program is passive in a way that it does not change its state.

For a program P , we denote the result of introducing reachability variables,
eliminating loops, and altering the code to single assignment form by trans(P).
For trans(P), we can compute a formula representing the weakest liberal pre-
condition straightforwardly (see, e.g., [1, 11, 14, 17]).
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In our implementation we can now use an automated theorem prover to check
the satisfiability of the negation of the formula CPI from Theorem 4:

V C(δ′, ℓ, k) := ℓ ≤
∑

st∈δ′
(r′st) ≤ k ∧ wlp (trans(P), false) ,

where r′st refers to the last incarnation introduced by the single assignment trans-
formation. If the theorem prover is able to prove V C unsatisfiable for given
δ′, ℓ, k we know that there exists no feasible path in the over-approximation of
the program that contains at least ℓ and at most k statements in δ′, and from
the soundness of trans it follows that there is no feasible path in the original
program either. Together with the algorithm PCA, this gives us a sound tool to
detect infeasible code. We now compare this tool with existing techniques.

7 Evaluation

In this section we compare 3 algorithms to detect infeasible code in terms of
theorem prover calls and computation time. We compare PCA presented in
this paper, Doomed [11], which checks a minimal set of statements on loop-free
programs, and DoomedCE [12], which performs the same checks as Doomed but
utilizes the counterexamples emitted by the theorem prover to avoid redundant
queries. Note, that DoomedCE can be considered a special case of PCA, where
ℓ = 1 and k is set to the number of statements.

We do not need to consider detection rate since all algorithms use the same
sound weakest liberal precondition computation (which is part of the Boogie
program verifier) and thus report the same infeasible code. For a comparison of
detection rate with, e.g., Findbugs we refer to [12].

Experimental Material. To evaluate the performance of our algorithm, we use a
set of 100 randomly generated Boogie procedures. We use generated programs
because this allows us to vary the number of diamond shapes in the control-
flow graph freely and no translation from a high-level language to Boogie that
preserves the set of feasible executions is required. Existing translations from
high-level languages into unstructured languages are not suitable for our algo-
rithms since they over-approximate the set of infeasible executions to retain
soundness w.r.t. partial correctness proofs. The threat to validity which arises
from generated programs is discussed at the end of this section.

Each generated procedure has between 150 and 1500 lines of code and mod-
ifies up to 50 unbounded integer. The body of a procedure contains a sequence
of 5 to 10 conditional choices (diamond shapes) each with up to 5 nested con-
ditional choices or loops. Besides the nested conditionals and loops, each block
has between 3 and 5 statements. The statements are either assignments of ex-
pressions to variables, or assertions. All experiments are run several times on a
standard laptop computer with ample memory.

Comparison of the algorithms. All algorithms identify 23997 out of 116925 state-
ments to be infeasible code. PCA uses 1383 theorem prover calls and a total time
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Fig. 3. Comparison of the number of queries. The x-axis ranges over the tested
procedures, sorted by increasing length, the y-axis indicates the total number of
theorem prover calls.

of 324 sec to identify all infeasible code; Doomed uses 8942 theorem prover calls
and 1309 seconds; DoomedCE uses 6365 queries theorem prover calls and 948
seconds. By its definition Doomed uses one query for each element in the effec-
tual set. The algorithm DoomedCE covers the effectual set by querying 71% of
the elements, and PCA is able to cover the set by querying 15% of the elements.
In terms of computation time, DoomedCE needs 72% of the computation time
of Doomed, and PCA needs 24% of the time used by Doomed.

Figure 3 compares the number of queries of PCA and DoomedCE in more
detail. As expected, we can see that the number of queries for PCA is drastically
lower than the number of queries for DoomedCE.

Figure 4 compares the computation time per procedure for algorithms PCA
and DoomedCE. We can see that, even though PCA uses more expensive ora-
cle queries than DoomedCE, there is a significant speedup due to the reduced
number of queries.

Threats to Validity. The randomly generated programs is the main internal
threat to validity. However, they allow us to control the shape of the control-
flow graph and, in particular, the number of diamond shapes which is important
to show the benefit of the path cover algorithm. The generated programs are
of a very simple nature. They do not use complex types or a heap. For all
algorithms, each query reasons about the set of paths in the program, these
queries will become proportionally more expensive if reasoning about a single
path becomes more expensive. Thus, we expect that our observations will still
hold for real programs. However, in our future work, we have to evaluate if
control-flow graphs of this complexity occur in practice.
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Fig. 4. Comparison of the computation time per program for PCA and
DoomedCE. The x-axis ranges over the tested procedures, sorted by increas-
ing length, the y-axis displays computation time in seconds.

Another internal threat to validity of our experiments arise form the used
theorem prover. In our experiments we use only Z3. Other theorem provers may
have a different efficiency for our kind of query (i.e., the linear inequalities).
However, to avoid using a slow integer theory solver, we could alternatively
encode the sum of reachability variables as a boolean formula.

External threats to validity arise from the needed translation from some
high-level language to Boogie.

Discussion of the results. The drawback of DoomedCE compared to PCA is its
inability to influence the counterexamples produced by the theorem prover. A
counterexample may cover many statements that have already been covered by
previously found counterexamples. Yet, forcing the theorem prover to provide
more useful counterexamples comes at the price of longer query times. How
high this price is, depends on the program structure. For example, if a program
consists of sequential but independent parts, there are feasible paths that provide
useful information in all parts simultaneously.

The effectiveness of searching useful counterexamples is also influenced by
the properties we check. It is to be expected that there are properties for which
the queries presented in this paper are significantly more expensive than, e.g.,
the queries used in DoomedCE. For these cases, algorithm PCA may require
noticeably more computation time than DoomedCE. However, our experiments
indicate that, at least for null pointer dereference and definite assignment anal-
ysis, the presented approach yields a significant performance improvement.

As mentioned earlier, algorithm DoomedCE can be considered as a special
variant of PCA. Both algorithms are part of a family of algorithms obtained by
varying the variables ℓ and k used to call CPI. This indicates that, even though

14



the presented approach is query optimal, there is still room for optimization to
achieve optimal computation times.

8 Conclusion

We have shown that the detection of infeasible code can be seen as a set cover
problem and, more importantly, that covering all feasible statements in an ef-
fectual set determines all feasible statements in a program.

We presented an algorithm that detects all infeasible code in a program which
uses an optimal number of queries. Using our implementation, for various appli-
cations of infeasible code detection, we have experimentally shown a significant
decrease in the computation time when compared to existing methods.

For our future work we see two promising directions. We will incorporate
the path cover algorithm directly in a theorem prover. In fact, the presented
algorithm can be seen as a strategy to force a theorem prover to search for a
particular counterexample. Thus, implementing this directly in a theorem prover
may lead to performance improvements by allowing reuse of information more
efficiently.

Another direction of future work is the development of different strategies
to realize CPI based on different approximations of the weakest liberal precon-
dition. A sound implementation of CPI that is only required to preserve all
feasible executions of a program (in contrast to verification contexts, where all
infeasible executions must be preserved) can use a coarser approximation and
may result in a significant performance improvement while maintaining a rea-
sonable detection rate. For some properties, a very coarse abstraction of wlp
may still be sufficient to identify most infeasible code.

The main usefulness of the presented approach is that it detects some com-
mon types of errors. It works without user interaction and, in particular, without
any false warnings. Perhaps the most intriguing aspect is that it has the potential
to become fast enough to be applied while typing.
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