The Gradual Verifier

Stephan Arlt'*, Cindy Rubio-Gonzélez?, Philipp Riimmer?**, Martin Schiif*,
and Natarajan Shankar****

! Université du Luxembourg
2 University of California, Berkeley
3 Uppsala University
4 SRI International

Abstract. Static verification traditionally produces yes/no answers. It
either provides a proof that a piece of code meets a property, or a
counterexample showing that the property can be violated. Hence, the
progress of static verification is hard to measure. Unlike in testing, where
coverage metrics can be used to track progress, static verification does
not provide any intermediate result until the proof of correctness can
be computed. This is in particular problematic because of the inevitable
incompleteness of static verifiers.

To overcome this, we propose a gradual verification approach, GraVy.
For a given piece of Java code, GraVy partitions the statements into
those that are unreachable, or from which exceptional termination is
impossible, inevitable, or possible. Further analysis can then focus on the
latter case. That is, even though some statements still may terminate
exceptionally, GraVy still computes a partial result. This allows us to
measure the progress of static verification. We present an implementation
of GraVy and evaluate it on several open source projects.

1 Introduction

Static verification is a powerful technique to increase our confidence in the quality
of software. If a static verifier, such as VCC [6] provides us a proof that a piece
of code is correct, we can be sure beyond doubt that this code will not fail for
any specified input. If the static verifier fails to compute a proof, we end up with
one counterexample. This counterexample may reveal a bug or may be spurious
in which case we have to provide annotations to help the verifier. This process
is repeated until no new counterexample can be found.
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Unfortunately, the process of eliminating counterexamples one by one is not
suitable for assessing software quality. Certainly, eliminating one bug improves
the quality of software, but the static verification does not provide us with any
information on how much we have verified already or how many bugs might still
be in there.

Ultimately, static verification is incomplete and thus the proof we are looking
for might not exist. In this case we end up with nothing. Static verification does
only provide yes/no answers, but to obtain partial results manual effort is needed.

Testing, on the other hand, only delivers such partial results in the form of
coverage data. Each test case increases the confidence in the application under
test. Progress can be measured using different kinds of coverage metrics. That is,
from an economic point of view, testing is more predictable. The more time we
invest in testing the more we can observe the coverage (and thus our confidence)
increase.

In this paper we present a gradual verification approach, GraVy. Gradual ver-
ification is an extension to existing static verification techniques such as VCC [6]
or Smack [16] that helps us quantify the progress of the verification. Instead
of computing just one counterexample, gradual verification computes an over-
approximation of all counterexamples to identify the subset of statements that
provably cannot terminate exceptionally anymore. That is, beyond the coun-
terexample indicating that the program is not yet verified, gradual verification
gives a percentage of statements that are already guaranteed to be safe.

Gradual verification results can be integrated into existing testing workflows.
Each time gradual verification is executed on an application under test, it returns
the subset of statements for which it can already prove that exceptional termina-
tion is impossible. This provides a metric of progress of the verification process
and allows the verification engineer to focus on the remaining statements.

Gradual verification is not a new static verification technique. It is an exten-
sion that can be applied to any existing static verification techniques to provide
additional information to the verification engineer. Thus, issues, such as han-
dling of loops or aliasing are not addressed in this paper. These are problems
related to sound verification, but gradual verification is about how to make the
use of such verification more traceable and quantifiable.

In gradual verification, we consider programs as graphs, where nodes cor-
respond to a control location in the program and edges represent transition
relations between these control locations. Further, we assume that sink nodes in
this graph either are exceptional sink nodes where the execution of the program
ends exceptionally, or normal sink nodes where executions terminate normally.

A statement in a programming language such as Java may be represented
by more than one edge if, for example, the statement throws an exception when
executed on certain inputs. In order to verify that a statement never terminates
exceptionally, we need to show that none of the edges representing this statement
goes into an exceptional sink. That is, either the statement is not represented by
edge going into an exceptional sink node, or this edge has no feasible execution
in the program.
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On this graph, we perform a two-phase algorithm: in phase one, we identify
all edges that may occur on a feasible execution terminating in a normal sink.
For the remaining edges we have a guarantee that they are either unreachable
or only occur on feasible executions into exception sinks.

In the second phase we check which of these remaining edges occur on any
feasible execution. That is, we identify edges that are unreachable and edges
that must flow into an exceptional sink. This allows us to categorize program
statements depending on the edges that they are represented by: a statement is
unreachable if it is represented by no feasible edge, safe if it is represented only
by feasible edges terminating in normal sinks (and reachable), strictly unsafe if
it is represented only by feasible edges terminating in exceptional sinks (and not
unreachable), and possibly unsafe otherwise.

That is, a program is safe, if all its statements are safe. However, if we cannot
show that all statements are safe, our algorithm still can provide a subset of
statements that are guaranteed to be safe, helping the programmer to focus
on those parts of the program that still need work. gradual verification can be
applied to full programs as well as to isolated procedures. It can be applied in a
modular way and also incorporate assertions generated by other tools.

We evaluate an implementation of our gradual verification technique, GraVy,
on several large open source projects. Our experimental results show that even
using a coarse abstraction of the input program, GraVy can still prove that a
large percentage of statements can never throw exceptions.

Related Work. GraVy is based on modular static verification as known from
VCC [6], Smack [16], or ESC/Java [12]. These tools translate an application
under test “procedure by procedure” into SMT formulas that are valid if this
procedure is safe w.r.t. a desired property. A counterexample to this formula
can be mapped back to an execution of the (abstract) procedure that violates
the property. The problem of these approaches is that they only produce one
counterexample at a time which makes it hard to estimate the progress of the
verification. To overcome this, GraVy uses techniques that detect contradictions
in programs [5,10,19] to identify the subset of statements that never (or always)
occur on a counterexample.

Gradual verification can also be compared with symbolic execution tech-
niques as found in program analysis tools like Frama-C [9], Java Pathfinder [14],
or Pex [18]. These techniques compute an over-approximation of the set of states
from which a program statement can be executed. A program statement is con-
sidered safe if this set of states does not contain any state from which the ex-
ecution of the statement is not defined. Gradual verification can be seen as a
lightweight alternative to these approaches: like static verification, it can be ap-
plied locally even on isolated code fragments, but it still can identify individual
statements that will never terminate exceptionally. Hence, gradual verification
does not provide the precision of other symbolic execution techniques, but it is
still sufficient to visualize the progress of verification to its user.

Recently, approaches have been presented that generate information during
the verification process that go beyond simple yes/no answers. Clousot [8,11],
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for example, infers a precondition for each procedure that is sufficient to guar-
antee the safe execution of this procedure. Compositional may-must analysis,
such as [13], can be used to distinguish between possibly and strictly unsafe
statements. GraVy can be seen as a lightweight mix of both approaches. It de-
tects a subset of statements that cannot throw exceptions (but does not provide
preconditions), and categorizes statements that may, or must throw exceptions
(but does not provide the precision of a may-must analysis.)

2 Example

We illustrate our approach with the toy example shown in Figure 1. The Java
procedure toyexample takes a variable x of type Obj as input and first sets x.a to
1 and then sets x.b to 2. An execution of the first statement x.a = 1 terminates
with a NullPointerException if toyexample is called with x==null. Otherwise
it terminates normally. Note that the second statement x.b = 2 can never throw
a NullPointerException, because the first statement already ensures that x
cannot be null at this point.

1 |void toyexample(0bj x) {
2 x.a = 1;

3 x.b = 2;

4

}

Fig. 1. Java source code of a toy example.

@(x ! =nu11)@ (x.p=2) @

Fig. 2. Program graph of the procedure toyexample. Edges are labeled with transition
relations, and nodes are labeled with line numbers, where the label X refers to the
point in the program that is reached when an exception is thrown.

Suppose that we are interested in verifying that, for any input, the procedure
does not terminate with an exception. First, we create a graph representation
of our program as shown in Figure 2. In this graph, nodes are labeled with line
numbers, where the label X refers to the point in the program that is reached
when an exception is thrown. This labeling is simplified for demonstration. Two
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different nodes might still share the same line number. Each statement of our
original program from Figure 1 is associated with one or more edges in this
graph, starting in the nodes labeled with the respective line number. For exam-
ple, the statement x.a in Figure 1 is represented by the three edges in Figure 2
starting in nodes labeled with 2: (2,(x==null), X), stating that, if x is null,
the execution terminates exceptionally; (2, (x!=null), 2), stating that execution
moves on if x is initialized; and (2,(x.a=1),3) which is the actual assignment if
x is initialized.

Now it is time to check if our procedure does not terminate exception-
ally. Existing techniques would easily come up with a counterexample to this
property that shows that for the input x==null the procedure will throw a
NullPointerException. However, this is a very pessimistic answer, and, given
that we do not know in which context toyexample will be called, it may even
be a useless answer if there is no calling context such that x==null. Hence, we
propose to give a different, optimistic, answer when checking if our procedure
does not terminate exceptionally:

z.b = 2 never throws an exception.

There are a few things to notice: First, our answer gives proofs instead of a
simple counterexample. Second, our answer holds in any context (but might be
too weak), whereas the counterexample may turn out to be infeasible. Third, in
our answer, our verifier verifies; existing techniques just complain.

To get to this answer, we start a two-phase algorithm. In phase one we try
to cover all edges that occur on any feasible path of the program that terminate
normally. That is, in our example, we try to find feasible complete paths ending
in the sink labeled with 4. One such path exists:

(2, (ET=EED), 2) (2. (EE=0), 3)(3, (EI=mUID) 3) (3. (EB=2). )

That is, the only two edges that cannot be covered during that process are
(2,(x==null), X) and (3,(x==null), X). For these edges we know that either
they are unreachable, or their execution leads to an exceptional termination.
Note that in this example, both edges happen to be immediately connected
to the error location X. However, in general, there might be other edges, not
directly connected to a sink, that can only be executed if normal termination is
not possible.

For the uncovered edges we start the second phase of our algorithm, where
we try to find any feasible complete path. From the first phase, we know that no
path through the remaining edges exists that terminates in 4, hence we are only
interested in paths terminating in X. For our example, this reveals one more
feasible path:

(2, @=810), X)
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That is, the other edge, (3,(x==null), X), provably does not have any fea-
sible execution. Now, we have a proof that x.b=2 in line 3 never throws a
NullPointerException in toyexample. We can further report that x.a=1 in
line 2 may throw a NullPointerException if x is null.

From here, the verification engineer knows that she has to focus on x.a=1, and
either guard the code with a conditional choice or strengthen the precondition
under which toyexample can be called. Then, gradual verification can be re-run
for the modified code. This is repeated until all statements are safe or a desired
percentage of statements is safe.

3 Statement Safety and Gradual Verification

In this section we give a precise definition of our gradual verification methodol-
ogy. We assume a piece P of sequential program code (in case of Java, the body
of a method), containing the set Stmt of statements. The control-flow of P can
be represented as a finite directed graph CFGp = (L, %y, Lewits Lewe, 0, Stmt),
where L represents control locations, £y € L is the unique entry point, Lz C L
is a set of exit locations representing regular termination, and L.,. C L is a set
of error locations representing termination due to a runtime exception. Further,
we assume that Loz N Lege is empty. An edge (¢, Tr,¢') € ¢ is labeled with
a transition formula Tr(v,?’) over unprimed and primed variables describing
program state.

A statement in our sequential program P is represented by possibly multiple
transitions, some of which may lead into error locations L.,.. The latter case
models runtime exceptions. For instance, a Java statement a.x = 1 could be
translated into two edges: one that assumes that a is allocated and a. x is assigned
to 1, and one where a is not allocated and control passes to an appropriate error
location. Throughout the paper, we use the partial function stmt : & — Stmt
mapping edges to statements in the program code P. Conditional choice of the
form if (c) A else B is represented by at least two transitions, one assuming
c and one assuming —¢, and all other transitions that are necessary to represent
c. The transitions representing the blocks A and B are not considered as part of
the conditional choice.

A complete path in a program is a finite sequence of control locations and
transition formulas © = {oTroly Tril2Trs ... Trp_14,, where {y is the entry
point, ¢, € Leyit U Lege is an exit location, and for each ¢ € {0,...,n — 1}
it is the case that (¢;, Tr;,¢;1+1) € 6. A complete path 7 is called a regular path
if £, € Legit, and an error path if £, € Lep.. A path is feasible if the composi-
tion Trgo Tryo---o Tr,_; is satisfiable. An edge (¢, Tr, ') € 4 is called feasible
if it occurs on a complete feasible path.

We use d,cy C 0 to denote the subset of edges that occur on regular paths
(i.e., on paths that end in a location in Lez;). Further we use dpoq = 0 \ dreqg
to denote all edges that inevitably lead into an error location. With the help of
Oreg and Opaq, Figure 3 defines safety categories for a statement s € Stmt in P
considered in gradual verification, which correspond to the four possible combi-
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3 feasible e € drey with s = stmt(e)
Yes No
T~
)
E *g Yes s is possibly unsafe s is strictly unsafe
v B
%’ I
- ®
n . .
§ f: No s is safe s is unreachable
m B

Fig. 3. Safety categories of statements

nations of regular or error transitions being feasible. For instance, a statement s
is considered safe if all transitions representing s are in dy.g.

4 The Analysis Procedure

To check whether a statement is safe, strictly unsafe, unreachable, or possibly
unsafe, we determine for each edge in the control-flow graph whether it can be
part of a feasible regular path, and if a statement is represented by a feasible
transition into an error location. We introduce Algorithm 1 to this end. The
algorithm takes a control-flow graph CFGp = (L, Lo, Lezit, Lexc, 0, stmt) as input
and returns two sets dpqq and djnf. dpeq contains all edges of the control-flow
graph that do not occur on any feasible regular path. d;,r C dpqq is the set of
edges that do not occur on any feasible path (regular, or error paths).

The algorithm uses a local variable S to track the edges in § that have not
been covered yet. In a first loop, Algorithm 1 covers edges that occur on feasible
regular paths. That is, all edges that remain in S after the loop terminates can
either only be executed on error paths or are unreachable. This set is stored in
Opad- In the second loop, our algorithms checks which of the remaining edges
can be covered with feasible error paths and removes them from S. That is, any
edge covered in the second loop has a feasible path into an error location. All
uncovered edges are stored in d;,5 because they have no feasible execution at
all.

With the resulting sets dpqq and d;,, ¢, we can check the above properties as
follows: given a statement st and the set of edges d5 = {(¢, Tr, 0")|(¢, Tr, ') €
d N\ stmt((¢, Tr, ")) = st}. The statement st is unreachable if d \ 0ip s is empty
and ;¢ is not empty. It is safe if d5¢ N (0paa \ diny) is empty and 0 \ din s is not
empty. In other words, st is safe if it is not represented by any feasible edge into
an error location and has at least one feasible edge. We say, st is strictly unsafe
if 8¢ \ Opaa is empty and Opaq \ dins is not empty. In any other case, we say st is
possibly unsafe.

Algorithm 1 terminates only if the control-flow graph CFG p has a finite num-
ber of paths (i.e., is loop-free). For programs with looping control-flow, abstrac-
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Algorithm 1: Gradual verification algorithm.

Input: CFGp = (L, 4o, Lexit, Lexe, 0, stmt) : control-flow graph
Output: dpeq: set of edges that never occur on feasible regular paths;
dins: set of edges that do not occur on any feasible path
begin
S+ 0
for regular path m in CFGp do
if isFeasible(m) then
for (¢, Tr,¢') in m do
| S e S\{(6 T 0} 5
end for
end if
end for
5bad < S N
for error path w in CFGp do
if isFeasible(m) then
for (¢, Tr,¢') in m do
| S« S\{1Tr,e)};
end for
end if
end for
5mf «~— S ;
end

tion is necessary. We will discuss one possible abstraction in Section 5 together
with other implementation details.

We say an abstraction of a control-flow graph CFGp is sound, if for any
feasible (regular and error) path CFGp, there exists a corresponding path in
the abstraction. That is, an abstraction is sound if it over-approximates the set
of feasible control-flow paths.

Given a program CFGp and an abstraction of it, and, given a statement st
that exists in the program and its abstraction (but may be represented by a
different set of edges in the control-flow graph), the following properties hold if
the abstraction is sound:

— If st is safe in the abstraction then it is safe or unreachable in CFG p.

— If st is strictly unsafe in the abstraction then it is strictly unsafe or unreach-
able in CFGp.

— If st is unreachable in the abstraction then it is unreachable in CFGp.

— If st is possibly unsafe in the abstraction then it is safe, strictly unsafe,
unreachable, or possibly unsafe in CFGp.

That is, for any sound abstraction, our algorithm guarantees that any state-
ment that may transition into an error location will be declared as either possibly
unsafe or strictly unsafe. Hence, if all statements in our program are either safe
or unreachable, we have a proof that the program will never terminate excep-
tionally.
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To be useful in practice, an implementation of our algorithm has to make
sure that it does not report overly many possibly unsafe in the abstraction, as we
cannot say much about them in the original program. Further, it would be useful
if unreachable statements in the original program are not reported as strictly
unsafe in the abstraction. Even though we are of the opinion that unreachable
code should be avoided at all cost, a user may be alienated if unreachable code
is reported as error. In the following we evaluate our approach.

5 Implementation

We have implemented our technique in a static verifier for Java bytecode called
GraVy. Our analysis automatically checks for the following types of exceptions:
NullPointerException, ClassCastException, IndexOutOfBoundsException,
and ArithmeticException. Other exceptions and arbitrary safety properties
can be encoded using RunTimeExceptions.

An error location in GraVy is an exceptional return of a procedure with
one of the above exceptions, unless this exception is explicitly mentioned in the
throws-clause of this procedure. Hence, if GraVy proves a statement to be safe,
it only means that none of the above exceptions may be thrown.

GraVy analyzes programs using the bytecode analysis toolkit Soot [20]. Tt
translates the bytecode into the intermediate verification language Boogie [4]
as described in [2]. In this step we add guards for possible runtime exceptions:
for each statement that may throw a runtime exception, we add a conditional
choice with an explicit throw statement before the actual statement. Further, we
add a local helper variable ex_return to each procedure which is false initially.
For any of the exceptions that we are looking for which is not in the throws
clause and not caught, we add a statement that assigns this variable to true.
This variable is used later on by the prover to distinguish between normal and
exceptional termination of a procedure.

Abstraction. Our algorithm from Section 4 requires a loop-free program as input.
Hence, we first need to compute loop-free abstractions of programs. To this end
we use a simple loop elimination as discussed in [1]: for each loop, we compute
a conservative approximation of the variables that may be modified within the
loop body. Then, we add statements that assign non-deterministic values to these
variables at the beginning and at the end of the loop body. Finally, we redirect
all looping control-flow edges of the loop body to the loop exit.

This way, we simulate an arbitrary number of loop iterations: the non-
deterministic assignments allow the loop body to be executed from any pos-
sible initial state and allow the variables modified within the loop to have any
possible value after the loop. This is a very coarse abstraction which also loses
all information about possible non-termination. However, if a statement can be
proved safe in this approximation, it will be safe in the original program, as the
abstraction over-approximates the program’s executions.

GraVy does not perform any inter-procedural analysis. Like in the case of
loops, we first compute an over-approximation of the set of variables that may
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be modified by the called procedure and then replace the call statement by a
non-deterministic assignment to these variables. In our translation into Boogie,
exceptions are treated as return values of a procedure and are thus included in
this abstraction. Again, this is an over-approximation of the program’s execu-
tions, and thus, any statement that can be proved safe in this abstraction will
be safe in the original program.

All these abstractions can be refined to increase the precision of GraVy.

Gradual Verification. On the loop-free program without procedure calls, we
can apply our algorithm from Section 4 to each procedure in a straightforward
manner (e.g., [1]) by translating the loop-free program into a SMT formula
that is satisfiable only by models that can be mapped to a feasible path in the
program. In the first pass of our analysis, GraVy adds an assertion to the SMT
formula such that the helper variable ex_return is false, in order to only allow
paths that do not terminate with unwanted exceptions. We use the theorem
prover Princess [17] to check for the satisfiability of this formula. For each model
returned by Princess, we extract an enabling clause to ensure that another path
must be picked in the next query. This process is repeated until the formula
becomes unsatisfiable. Then, GraVy pops the assertion that ex_return must be
false and continues until the formula becomes unsatisfiable again.

Using the information obtained during this process, GraVy prints a report
for each procedure that pigeonholes its bytecode instructions into the categories
unreachable, safe, strictly unsafe, and possibly unsafe as described in Section 3.

Soundness. GraVy is neither sound nor complete. Here, soundness means
that if a statement is reported to be safe, it is always safe. Completeness means
that any statement that is safe will be reported to be safe. GraVy has several
sources of unsoundness: e.g., Java integers are modeled as natural numbers (i.e.,
over- and under-flows are ignored). Furthermore, we ignore the use of reflection
(i.e., InvokeDynamic), and we do not consider parallel executions.

However, note that the unsoundness is specific to our prototype implementa-
tion. Gradual verification is always as sound as its underlying static verification
algorithm. Thus, there is much room for improvement by combining GraVy with
more advanced static verifiers.

6 Evaluation

The motivation of gradual verification is to make static verification predictable
by providing a progress metric. That is, to be of practical use, GraVy must
identify a reasonable percentage of statements to be safe, so that the verification
engineer can focus on the remaining code. Further, it must be fast enough to
be applicable in an incremental verification process. That is, it must not be
significantly slower than existing static verifiers such as VCC. This leads us to
the following two research questions:
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Q1 Is GraVy precise enough to show that a reasonable percentage of statements
are safe in well-tested applications?
Q2 Is GraVy fast enough to be applied to real-world software?

Ezxperimental Setup. To answer these questions we evaluate GraVy on several
open source programs. For each application under test (AUT), we analyzed the
JAR files of the latest stable (and thus hopefully tested) release from the of-
ficial websites. All experiments were carried out on a standard notebook with
an i7 CPU and 8 GB RAM (the Java VM was started with initially 4 GB).
GraVy tried to analyze each procedure of the AUTSs for at most 10 seconds. If
no result is reached after 10 seconds, the procedure is skipped and a timeout
is reported. We ran the analysis two times for each AUT: once with gradual
verification, and once with a weakest-precondition-based static verifier [15]. For
the weakest-precondition-based static verifier we implemented a simple verifier
inside GraVy that reused large parts of the GraVy infrastructure. Instead of
repeatedly querying the theorem prover, the static verifier only sends one query.
The result to this query is either a proof that no statement in the procedure
may throw an exception of the previously mentioned types, or a counterexample
that represents an execution of the abstract procedure that leads to exceptional
termination.

In addition to the results returned by GraVy about which statements are
unreachable, safe, strictly unsafe, or possibly unsafe, we collected the following
information: the total time for analyzing a procedure including the time for
printing the report, and the total number of procedures for which GraVy returns
a timeout.

To compare the gradual static verification with the weakest-precondition-
based static verification, we also stopped the time that both approaches spent
inside the SMT solver. We compared the time inside the prover rather than
actual computation time, because the overhead for both approaches is the same,
and thus, the time spent in the prover is the only relevant time difference.

. possibly strictly
AUT | # stmts safe # throwing stmts unsafe unsafe unreachable
Argsdj | 2,322 | 2,011 820 311 0 0
GraVy | 20,372 16,522 15,516 3,844 0 6
Hadoop| 209,683 | 177,373 109,758 32,249 7 54
Logdj | 25,128 | 22,381 11,007 2,746 0 1

Table 1. Results of applying GraVy to several AUTs. # stmts is the number of an-
alyzed statements per AUT. # throwing stmts is the number of statements that is
represented by at least one edge into an error location.

Discussion. Table 1 shows the report computed by GraVy for each AUT. By
comparing the columns # stmts and safe, GraVy is able to prove more than
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80% of the analyzed statements to be safe for all AUTSs. For Args4j and Log4j,
GraVy can even prove over 86% percent of the statements to be safe. If we only
consider the statements that are represented by edges into an error location (i.e.,
by comparing the columns # throwing stmts and possibly unsafe), GraVy proves
62% of the statements to be safe in Args4j, and 75% in Log4j.

For Hadoop, which is also widely used and well-tested, we only achieve 84%
to be safe (and 70% of statements represented by edges into error locations). This
is because Hadoop makes heavy use of multithreading which is not handled by
GraVy. The use of multithreading is also the cause of the reported unreachable
and strictly unsafe statements. None of these statements is actually unreachable
or strictly unsafe, they rather exhibit situations where a thread is waiting for
another thread to initialize an object.

GraVy applied to itself can only prove 81% to be safe (and 75% of the state-
ments represented by edges into error locations). This supports the idea that the
percentage of safe statements relates to the maturity of the code: GraVy is cur-
rently under development and represents a rather prototypical implementation.

Hence, we can give a positive answer to our research question Q1. GraVy can,
even on a coarse abstraction, prove a large percentage of statements safe. Further,
experiments indicate that the percentage of safe statements may correlate with
code quality.

What remains open is what useful thresholds for the percentage of safe state-
ments are. Many statements in Java bytecode can never throw any of the consid-
ered exceptions and thus are always safe. Therefore it is hard to define a lower
bound for the percentage of safe statements. Our experiments cannot say any-
thing about an upper bound either, because we did not try to improve the AUT's
and rerun GraVy as this would exceed the scope of this paper. For the future of
GraVy we plan a case study on how to apply gradual static verification, e.g., by
using specification languages such as JML [7].

AUT |# procedures|time (s)|time per procedure (s)|# timeouts|removed exceptions
Argsd] 361 57 0.16 2 6.7%
GraVy 2,044 668 0.33 33 8.3%
Hadoop 18,728 6,459 0.34 391 8.4%

Logdj 3,172 704 0.22 40 13.0%

Table 2. Performance and number of timeouts of GraVy on the different AUTs. The
column # timeouts states the number of procedures that could not be analyzed within
the time limit. The last column states the percentage of exceptions that could be
removed using constant propagation.

Table 2 shows the performance results of our experiments. For all AUT'Ss the
average time needed per method is significantly below one second (< 0.4s). The
number of procedures that reach a timeout is below 2.1% for all AUTSs. Experi-
menting with timeouts larger than 10 seconds did not significantly improve this
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number. Most procedures that timeout contain large amounts of initialization
code (e.g., constructors), or GUI related code.

Before running gradual verification we run a constant propagation to elimi-
nate all possible exceptions that can be ruled out trivially. We are able to elimi-
nate between 6.7% and 13.0% of the exceptions. That is, a significant percentage
of the statements proved safe by GraVy need non-trivial reasoning.

In summary, GraVy can produce meaningful results within a reasonable time
(less than 0.4s per procedure) and with few timeouts.

Args4j| GraVy| Hadoop| Log4j
GSV 45s | 346s | 4,425s | 294s
SV 7s 33s 689s | 41s
Safe 32.6% | 40.8% | 40.2% |40.3%

Table 3. Theorem proving time for gradual static verification (GSV) and weakest-
precondition-based static verification (SV) for the AUTSs. Ounly the time spent in the
theorem prover is measured as the overhead for transformation, etc. is identical for
both approaches. The last row states how many procedures can be proven safe by both
approaches (i.e., only contain safe statements).

Table 3 compares the computation time of GraVy and a normal non-gradual
verifier. For this purpose we built our own weakest-precondition based static
verification following the idea from [15]. As both approaches require the same
program transformation, we only compare the time spent by the theorem prover.

The first row shows the theorem proving time for gradual verification (GSV),
the second row shows the theorem proving time for non-gradual verification (SV),
and the last row shows the percentage of the procedures that can be proven safe
by both approaches (i.e., procedures that only contain safe statements). For each
AUT, the extra time needed for gradual static verification is less than a factor of
10. Most procedures still can be analyzed within few seconds. We believe that,
by further improving the reuse of theorem prover results as suggested in [3], we
can reduce these extra costs even further.

Non-gradual verification alone is able to verify between 30% and 40% of the
procedures (excluding timeouts) for the desired property for all AUTs. Most
of these procedures are generated by the Java compiler, such as default con-
structors. For all remaining procedures, non-gradual verification only returns a
counterexample. Here, gradual static verification provides additional informa-
tion by ruling out those statements that are already safe within the remaining
procedures.

In conclusion, we can also give a positive answer to research question Q2:
GraVy takes less than a second per procedure for real-world software. Although
it is (naturally) slower than non-gradual verification, it is still fast enough to be
usable in practice.

Threats to Validity. The main and by far most important threat to validity is
our unsoundness. For example, in Hadoop, where we prove 177,373 statements
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to be safe, it is not possible to manually inspect if they are subject to unsound-
ness or not. To get a sense of how our abstraction affects the precision of GraVy,
we investigated roughly a hundred statements from different AUTs and differ-
ent categories (i.e., safe, unreachable, etc.). We found several cases where code
was reported to be unreachable or strictly unsafe in the abstraction but safe in
the original program. We did not find statements that are reported safe in the
abstraction but unsafe in the original program.

Another threat to validity is the subset of exceptions that we consider in
our analysis. There are many more exceptions that can cause unexpected pro-
gram behavior. However, from manual data-flow inspection we can see that
NullPointerException is by far the most common exception that can be thrown.
Thus, we believe that adding more classes of exceptions to GraVy will certainly
increase the usefulness of our approach, but will only have a limited influence
on the results presented in this paper.

Finally, the used tools are a threat to validity. Using Java bytecode as input
allows us to use a much simpler memory model than, e.g., for C. It is not clear if
our approach can be applied to C programs equally well. For example, we allow
arbitrary aliasing between variables when analysing a procedure. This would,
most likely be too coarse for analyzing C programs and further analysis would
be required.

7 Conclusion

We have presented a technique for gradual static verification. Gradual verifi-
cation extends existing static verification which provides yes/no answers (i.e.,
either a proof or a counterexample) by a notion of the verification progress.
That is, even if a full correctness proof is impossible (e.g., because there are
some cubic formulas in the code), we can still report how many statements can
be “verified”.

Gradual verification blends nicely with existing best practices in testing,
where a test coverage metric is used to measure progress, and to decide when to
stop testing. Therefore, we believe that gradual verification can make the use of
formal methods in industrial software development more acceptable.

Our experiments show that GraVy is reasonably fast and that it can already
prove a convincingly high percentage of statements to be safe, even using a coarse
abstraction. Further, the experiments indicate that verification coverage may be
a good indicator for the maturity of code.

We are convinced that gradual static verification is a useful addition to ex-
isting static verification tools and a nice and cheap alternative to verifiers based
on symbolic execution such as Frama-C.
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