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Abstract

Crowdsourcing promises to quasi-automate tasks that cannot be automated otherwise.
Success stories like natural language translation or recognition of cats in images show that
carefully crafted crowdsourcing tasks solve large problem instances which could not be
solved otherwise. To utilize crowdsourcing, one has to define the problem in a way that
is easy to split into small tasks, that the tasks are easy to solve for humans and hard to
solve for a machine, and that the machine can efficiently check if the solution is correct.

In this paper we discuss a novel approach of using crowdsourcing to assist software
verification. We argue that Horn clauses form a good base for crowdsourcing since they
are easy to subdivide, and that logic abduction is a suitable task since it is hard to find
abductive inferences for Horn clauses automatically, but it is easy to check if an infer-
ence makes a Horn clause valid. We describe a prototype implementation, we show how
crowdsourcing integrates in the verification process, and present preliminary results.

1 Introduction

Crowdsourcing is becoming a popular tool in different areas of computer science to achieve
quasi-automation of complex problems that cannot be automated otherwise. Problems like
image recognition, translation of texts into foreign languages, or creation of maps are just a
few examples that successfully rely crowdsourcing. Lately, we see more and more interest in
crowdsourcing from the software engineering community [22]. In this paper, we want to discuss
the merits of crowdsourcing software verification. While automation of software verification
tools is improving, occasional manual interaction is inevitable, and to make verification really
useful in practice, a lot of legacy code (like libraries, device drivers, etc), needs to be verified
by someone. These verification tasks are not overly time critical, so crowdsourcing them seems
like a feasible solution. In this paper we discuss how such a crowdsourcing approach could be
implemented and discuss a prototype.

There are many different approaches to crowdsourcing. Citizen science and gamification-
based approaches such as SETI@home [1] or FoldIt [10] have received a lot of attention. For
verification, however, these approaches may not be the most suitable since the task at hand
requires a certain amount of expertise. For this paper, we envision drawing a userbase from
platforms like Amazon mechanical turk, or Upwork, where certain requirements can be enforced
on the background of the crowd users.

Crowdsourcing of verification has caught some interest from the community in the recent
years. DARPA ran a project on crowdsourcing verification problems with several teams devel-
oping games that crowdsource different aspects of various verification approaches. For example,
one of the developed games, GhostMap [23, 30], crowdsources the problem of finding suitable
refinements in a CEGAR-based model checker. Another game, Xylem [13], crowdsources pred-
icate discovery to assist the abstract interpretation tool Frama-C. Other tools, like Binary-
Fission [12] crowdsource invariant discovery to obtain more readable invariants than existing
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machine learning approaches, and Paradox or Pipejam [8] turn constraint systems from type
checking into puzzle games.

A survey [7] discusses a set of common issues that the teams in the program faced. One
of the major challenges described is the ability to control the difficulty of the crowdsourced
problems. On one hand, the problems are expected to be complex since they could not be
solved without crowdsourcing, on the other hand they have to be simple enough be solvable
by a human in a reasonable time. Further, the problem has to be formulated in a way that
checking the solution is cheap, otherwise we cannot give feedback to users. This is of particular
importance for mechanical turk based crowdsourcing where users get paid for correct answers.
For solutions that gamify the crowdsourcing, an additional requirement is to get a notion of
difficulty of problems. If the difficulty of problems changes randomly, it is hard to develop a
game that keeps users engaged over a long period of time.

We summarize these problems in the following research questions that we want to address
in this paper. How can we build a crowd-sourcing infrastructure for software verification where:

1. The crowdsourced problems are of a nature where human creativity can out-perform the
machine.

2. Crowdsourcing problems can be generated from failed verification attempts and the com-
plexity of the crowdsourced problem can be parameterized.

3. User provided solutions are cheap to check.

To answers these questions we propose an implementation based on Constrained Horn
Clauses (CHC) and logical abduction. CHCs provide a convenient way to encode a variety
of software verification problems [3, 4, 15]. In this encoding, the set of possible states at a par-
ticular program location is represented by a predicate over all program variables that are live
at this location (e.g., p(x, y, z)) and each transition between locations is represented by a Horn
clause. For example, a clause p(x, y, z + 1)← q(x, y, z) ∧ x < y represents a transition where z
gets incremented by one if x < y. Tools like SeaHorn [17] and JayHorn [18] can generate such
CHCs from C or Java programs.

A Horn solver, like HSF [16], Eldarica [28], Spacer [19], or Z3 [6] solves a system of CHCs
by finding a formula for each predicate such that all Horn clauses become valid (or a counter
example can be found). The solver finds these formulas by either starting from the precondition
(i.e., the Horn clauses that have no predicate in the body), or from the assertions (the Horn
clauses that have no predicate in the head) and propagating results until either a solution is
found or the current assignments create a contradiction, in which case Craig interpolation can
be used to refine previous assignments. A Horn solver may get stuck if all predicates are assigned
and there is no contradiction, but some Horn clauses are only Sat but not valid. In this case,
we need logic abduction to either strengthen a predicate in the body or weaken the predicate
in the head of the Horn clause.1 This is the part of verification that we want to crowdsource.

Previous verification approaches using abductive inference (e.g., [9, 29]) have shown that
the technique is powerful, but that it is hard to find right the abductions automatically since
there is little information to learn from in the Horn clauses. This addresses our first research
question: we hypothesize that humans are generally better at making abductive inferences than
machines because they can draw from intuition and experience to chose formula expressions
that may be suitable. While we could equip a solver with a portfolio of useful patterns to find
a good inference, we can always find (or construct) an abduction problem where the patterns
available to the tool are not sufficient.

1Logic abduction is the problem where, given an implication A → B that is but not valid, we want to find
a C such that A ∧ C is satisfiable and C ∧A → B is valid.
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To generate such an abduction problem for crowdsourcing, we run a Horn solver on a
verification problem as discussed above until it gets stuck at a point where at least one clause
is only Sat but not Valid. This clause together with the current assignments to the predicates
is then turned into a crowdsourcing problem. We can now tune the difficulty of the problem
by choosing how many other clauses that share predicates will be included. The more Horn
clauses we include, the harder it becomes to find an assignment that makes all clauses valid.
This addresses our second research question and gives us fine grained control over the difficulty
of the problem.

The third research question is also addressed by constructing problems this way. Since a
solution to a crowdsourced problem is an assignment to the predicates, we can simply instantiate
the predicates for each Horn clause and use an SMT solver to check if they are valid. This check
is sufficiently fast to provide immediate feedback to the user.

In Section 2 we walk through the crowdsourcing process using a small example. In Section 3
we formalize the approach. Section 4 outlines the implementation of our prototype and sketches
the directions for the future, and Section 5 shows discusses some first results.

Contributions. The main contribution of this paper is to show that the Horn clause formal-
ism used in software verification translates nicely into crowdsourcing terminology. Horn clauses
can be split into self contained sub-problems. Improving predicate assignments with abduction
is a task where human experience potentially can have an edge over algorithms, and checking
if a user-provided solution is a valid abduction can be done efficiently.

We do not claim any silver bullet or magic potion: this crowdsourcing technique only helps if
there exists a solution to the Horn encoding that can be checked by an SMT solver. It may still
be the case that there exists a solution but that this solution is not expressible in a decidable
theory. In this case, our approach will not help either. Further, the details of how to split
Horn clauses into sub-problems and how to present problems to the user can be implemented
in many different ways and we do not argue that our way is better than others.

The second contribution is an web-based implementation to crowdsource Horn solving. The
system is online to play with and can easily be adopted to use different ways of splitting CHCs
and different user interfaces.

2 Example

We illustrate how crowdsourcing can help Horn solvers to solve software verification tasks
by providing abductive inferences using the example program in Figure 1. Note that many
state of the art Horn solvers solve this problem without the help of abduction due to various
optimizations but it is suitable to motivate our approach.

The curious reader can try the system on a set of benchmark problems online immediately
at http://www.horn-abduction.org.

Let us assume we want to verify the assertion in line 7 and we agree to ignore potential
numeric overflow bugs. Then we can use a tool like SeaHorn to obtain a system of CHCs that
models this verification condition that look similar to the clauses in Figure 2. In practice,
these CHCs tend to be more complex because they have to encode various assumptions and
initialization code.

Each of the predicate p0, p1, and p2 represents the set of possible states at a particular
program location. The predicate p0 summarizes the possible states at the loop head in line 3,
p1 summarizes the states after the execution of the loop body, and p2 the states after exiting
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1 int x = 0;

2 int y = 0;

3 while (x < n) {

4 x = x + 1;

5 y = y + 2;

6 }

7 assert(x + y == 3 * n);

Figure 1: Example program to illustrate how abduction can assist Horn solving. The program
increments x by one and y by two until x becomes bigger than n and then asserts that the sum
of x and y is three times n.

p0(0, 0, n) ← n ≥ 0 (1)

p1(x, y, n) ← p0(x, y, n), x < n (2)

p2(x, y, n) ← p0(x, y, n), x ≥ n (3)

p0(x+ 1, y + 2, n) ← p1(x, y, n) (4)

x+ y = 3n ← p2(x, y, n) (5)

Figure 2: Horn encoding of the program in Figure 1. The predicate p0 corresponds to the states
at line 3, p1 represents the states after the loop body at line 6, and p2 the states before the
execution of the assertion in line 7.

the loop (and before executing the assertion) line 7. For a Horn clause H ← B, we call B the
body and H the head. The intuition is that if the body holds we can move to the head.

The first Horn clause describes the initialization and the implicit precondition that n is non-
negative. This clause has no predicate in the body and is thus referred to as fact. The second
Horn clause is the condition to enter the loop. It describes the effect of executing the loop
body. The third clause is the condition for leaving the loop. The last Horn clause represents
the assertion. Clauses that have no predicate in the head are referred to as query.

Let us assume our Horn solver applies a property directed algorithm that starts from the
query and works backwards. Initially all predicates are assigned to the trivial solution true. For
this assignment, all Horn clauses but the last one are valid. In the first iteration, the algorithm
will update p2 to the formula x + y = 3n from the head of the last Horn clause. This update
validates (5). Now, the only non-valid clause is (3): x+ y = 3n← true, x ≥ n which causes the
algorithm to update p0 to x+y = 3n∧x ≥ n. Next, we update p1 to x+1+y+2 = 3n∧x+1 ≥ n
based on Horn clause (4). With that assignment, the second clause becomes unsatisfiable and
we can use Craig interpolation to improve p0.

Now, all Horn clauses but (1) are valid. For simplicity, let us assume that the Horn solver
doesn’t know any tricks to recover from this (in practice they do, but they may up in the same
situation later). The problem that we want to crowd source is to find a better assignment for
p0 that validates the Horn clause:

p0(0, 0, n)← n ≥ 0

Searching this assignment can be seen as finding an abduction to refine p0.
We can now chose the difficulty of the crowdsourcing problem by deciding how many clauses

we want to show to the user. If we only show this one clause it is relatively simple to find a
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solution that makes the formula valid (e.g., p0 := n ≥ 0). To increase the difficulty, we can also
show other Horn clauses that contain p0 and are valid under the current assignment to p0. For
example:

p0(0, 0, n)← n ≥ 0

x+ y = 3n← p0(x, y, n), x ≥ n

Note that we only want to allow the user to modify the instantiation of predicates that occur
in clauses that are not valid yet (here only p0 qualifies). All other predicates are instantiated
with the last assignment used by the solver. For this example, the user could come up with
a variety of solutions. For example 2x = y ∧ x ≤ n or 2y = x ∧ x ≤ n which would be the
invariant that we are actually looking for.

Each proposed solution can quickly be validated with an SMT solver by checking if all Horn
clauses presented to the user are valid under the current assignment. If so, the solution is
accepted and the user gets rewarded regardless of how useful the assignment is for solving the
remaining clauses.

With the selected solutions, we can continue the Horn solving process. This will either lead
to a solution or the solver will get stuck at a different position and create a new problem that
can be crowd sourced.

Since we do not restrict which type of assignments a user can give to predicates (i.e., either
only strengthen or only weaken the last solution), we cannot guarantee that this approach
converges. Enforcing monotonicity can be enforced at low cost of an additional implication.
However, as discussed in [29], forcing monotonicity is not necessarily the most practical way
to find a solution, and from a crowdsourcing perspective, it might be confusing to disallow
solutions.

We have implemented a prototype of the system and made it available online. At this point
have not invested effort in usability and rely on the fact that users are experts in logic. Since the
purpose of the paper is showing how Horn solving can be turned into a crowd sourcing problem,
we focused on building the round-trip and leave a proper UI design and the development of an
incentive system for future work.

In Section 4 we discuss various design decisions in our implementation, how we perform
book keeping, and how we create new problems.

3 From Horn clauses to Crowdsourcing

Many software verification problems can be encoded as CHCs. An overview of different ap-
proaches is given in [3] and several tools, such as SeaHorn [17], JayHorn [18], or the FLATA-C
plugin for Frama-C [5], are able to generate verification conditions in the form of CHCs.

Throughout this paper, we use the following terminology: H := h1 . . . hn is called a system
of CHCs. A CHC h is a formula H ← C ∧ B1 ∧ · · · ∧ Bn where Bi is an application of a
relational symbol (or predicate) p(exp1, . . . , expn) to terms expi in first-order logic, H is either
also a predicate or false, and C is a constraint (e.g. x < 5). We say H is the head or the Horn
clause and (C ∧B1 ∧ · · · ∧Bn) is the body.

We use the shortcut pred(h) to denote all predicate symbols p that occur in h and we use
h|[p/φ] to denote a clause where all occurrences of predicate p have been instantiated by formula
φ. An assignment Asn of formulas is a function that maps each predicate p to a formula
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Figure 3: Screen shot of our web interface for providing assignments to predicates. The left
shows the clauses where all predicates but the ones that can be changed have been instantiated,
and the right shows the text box where the user can enter a new invariant.

φ = Asn(p). We say a CHC is solvable using symbolic models if there exists a Asn such that
the formula h|[∀p∈pred(horn),Asn(p)/p] is valid.

Horn clauses solver implement different strategies to search for proper assignments. How-
ever, regardless of the implementation, they get stuck in similar ways, with a tentative assign-
ment to the predicates that is not sufficient to make all clauses valid.

3.1 Crowdsourcing Symbolic Solutions

The Crowdsourcing Problem. Given a system of CHCs with predicate symbols p1, . . . pn,
we say a problem is an assignment to each pi, such that all clauses are satisfiable under this
assignment but at least one clause is not valid. Solving this problem means modifying the
assignments to p1, . . . pn until all Horn clauses become valid.

Turning problems into tasks. Now that we have defined which problem we want to crowd-
source, we can define how we split the problem into tasks that can be distributed and how
solutions to the tasks can be checked efficiently. We propose to generate tasks from subsets of
the CHCs, s.t. solutions are updates to the assignments of a subset of the predicates in the
problem.
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Each task has to contain at least one Horn clause that is not yet valid. Finding an update
to the predicate assignments that makes this single clause valid should be an easy task a user
(but the result may not be very useful). We can now tune the diffusivity of tasks by including
additional clauses into the task. In our implementation, we include only clauses that share
at least one predicate symbol with our initial clause. If the added clauses contain predicate
symbols that are not part of our initial clause, we instantiate those to the assignments given
by the problem. This ensures that the user can only modify the predicates that are relevant to
the clause that we want to make valid.

Algorithm 1: Algorithm to generate crowdsourcing tasks from a given problem.

Input: Problem given as system of CHCs H := h1 . . . hn and assignment Asn, and a clause
htask ∈ H that is satisfiable but not valid under Asn.

Output: A set of crowdsourcing tasks T , where each task is a triple (H, Asn) where H is the
CHCs that have to be valid under this assignment, and Asn is the current assignment
under which all clauses in H are satisfiable but at least one is not valid.

begin
T ← {} ;
Hsupport ← {h ∈ H|h 6= htask ∧ pred(h) ∩ pred(htask) 6= ∅} ;

for Hsub ∈ 2Hsupport do
Htask ← Hsub|[∀p 6∈pred(htask):Asn(p)/p];
Htask ← Htask ∪ {htask};
if All clauses in Htask are satisfiable then

T ← T ∪ (pred(htask),Htask, Asn);

end for
return T ;

end

We describe our task generation in Algorithm 1. The algorithm takes a problem in the form
of a system of CHCs H and an assignment Asn as input, s.t. all clauses in H are satisfiable
under Asn and at least one is not valid. Further, the algorithm takes one htask ∈ H as input,
s.t. htask is satisfiable under Asn but not valid. If there are multiple clauses with that property
in H, we invoke the procedure separately for each of those clauses.

The algorithm now creates a set of tasks where the user has to find new assignments for the
predicates pred(htask). To that end, it first creates a copy of Hsupport that contains the subset
of clauses of H that share at least one predicate symbol with htask (excluding htask).

We iterate over all subsets of Hsupport to create a new task. First, we create a set of CHCs
Htask that contains copies of the clauses in Hsupport where we instantiate all predicates in that
are not pred(htask) to their current assignment in Asn. Then we add htask to Htask. That is,
we ensure that pred(Htask) = pred(htask) and that the user can only modify predicates that
directly affect htask.

To avoid generating unsolvable tasks, we check with an SMT solver that the conjunction of
the partially instantiated clauses in Htask does not imply false.

If Htask is not unsolvable, we add a new task to our output. A task is a tuple consisting of
the CHCs Htask together with the current assignment Asn. The user then has to provide an
update to Asn(p) for all p ∈ pred(H).

Integrating crowdsourcing results. Users provide solutions to a crowdsourcing task
(H, Asn) in the form of an updated assignments Asn′. To check if a solution should be accepted
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we can invoke an SMT solver to verify for each clause h ∈ H if it is valid under Asn′. This also
allows us to provide fine grained feedback if only some clauses are valid and other are not. This
check is cheap since all predicates are instantiated and we can provide prompt feedback to the
user.

If the user-provided solution is valid, it does not yet mean that the solution helps us to solve
our original problem. We now have to seed our Horn solver with the Asn from the user. Since
we still have the assignments from all predicates that were instantiated during generation of
the task and the newly provided assignments, we can set the Horn solver to this assignment
and let it perform its usual strategy from there. Either this solves our problem, or it gets stuck
at a different position which then creates a new problem from which we can create new tasks.

Restarting the Horn solver is not done every time a user provides a solution since it is not
clear how long the Horn solver will take. The user only obtains immediate feedback if the
provided assignment makes all clauses valid.

This closes our crowdsourcing loop. We have demonstrated how Horn clause solving can
be turned into a crowdsourcing problem, we have shown how the problem can be broken into
tasks and how the difficulty of these tasks can be adjusted by limiting the number of clauses
per tasks, and we have seen that user provided solutions can be checked with one SMT query
per clause, and that the solution can seamlessly into the Horn solving process.

It is always a long stretch from theory to practice, so, in the following Section, we discuss
some of the obstacles and epiphanies that came our way during the implementation.

4 Implementation

We give an overview of our crowdsourcing architecture along Figure 4. Our system gets verifi-
cation problems formulated as CHCs from various sources, such as the software model checkers
JayHorn and SeaHorn. The system is agnostic to where the clauses come from as long as they
are in valid SMT2 format.

Problem
Store

Task
Store

Horn	Solver

Task
Generator

Crowdsourcing

SMT	SolverSolution
Buffer

Horn-based	verifier

Figure 4: Overview of the architecture of our crowdsourcing infrastructure.

In the first step, our system checks to CHCs with two Horn solvers, Eldarica and Z3 with
a configurable timeout. If the CHCs can be solved within the given time limit, we report the
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result immediately and no crowdsourcing is required. This can be seen as a portfolio solver. If
any of the available solvers finds a solution, we return it, and it is easy to add additional solvers
to the system, even if they do not support problem generation (because we only invoke problem
generation if all solvers fail, in which case we can use the problem generation from Eldarica or
Z3).

If the Horn solver fails to find a solution in the given time limit, it stops and returns an
intermediate result which is then added to the problem store as a json blob.

For each added problem, we invoke the task generator which, as discussed in Section 3.1,
generates tasks by selecting a subset of clauses from a problem and instantiating the predicates
that should not be modified by the user. Currently, our implementation generates all possible
subset of clauses up to a size of six. In the evaluation, we discuss why our results suggest that
this is not the most effective approach for crowdsourcing.

Each task gets checked with an SMT solver first the instantiated clauses are consistent. If
this is not the case, the user would not be able to find a solution and we discard the task right
away. All other tasks get stored in a database called task store.

The task store is connected to a Flask server to hosts the user interface. When users connect,
they have to register first. We do not allow unregistered user to submit solutions to identify
skills of users early. E.g., if a user tends to submit tautologies or trivial solutions, we do not
want to waste time (and money on him), but if a user provides high quality solutions, we want
to provide incentives for her to keep contributing.

Registered users can select from all available tasks. The tasks are sorted by difficulty (which
is the number of clauses that need to be valid). If the user submits a candidate solution to a
task, it is checked by the SMT solver. For each clause, we create an SMT query that checks if
the clause is valid. Once all clauses are valid, the result get stored in a solution buffer.

A separate process fetches candidate solutions from the solution buffer, which contain the
user assignments, and links to the task and the problem this task was created from. The process
loads the SMT file associated with the problem and adds the assignments from the candidate
solution as initial-predicates to the SMT file. Then it starts the Horn solver again. If the
problem can now be solved, we mark the solution (to potentially award the player), and mark
the problem and all tasks created by this problem for deletion. If the solver gets stuck under
the new solution, it creates a new problem that gets added to the database.

5 Evaluation

We have implemented the system described in the previous section and are continuously col-
lecting data to better understand its potential and limitations. The system is available online,
and we encourage the reader to play with it and provide new solutions.2

We evaluate our system on a set of benchmark problems provided by Eldarica3. The bench-
marks originate from different domains such as software assertion checking, protocol verifica-
tion, and termination analysis. The SMT2 files were generated by different tools and we did
not require any special formatting.

Experimental setup. We used a total of over 400 SMT files as input. For 219 of them, the
Horn solvers could not find a solution within a 10 second time limit. From these, we created

2http://www.horn-abduction.org. Before playing, an account has to be created.
3https://github.com/uuverifiers/eldarica
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the 219 initial problems for our crowdsourcing. All problems are unique and initially created a
set of 219 tasks.

After several rounds of user submission, new tasks were created through refinement and, by
the time of submitting this paper, are total number of 334 tasks have been generated.

To collect data from users, invited friends and colleges via email and social networks to try
the website. We opened the website on January 20 to collect data and recorded the results
after that.

5.1 Discussion

By the time of writing this paper, 58 users tried to solve problems on our website over and
submitted a total 699 correct solutions. 37 of the 58 users registered but did not submit correct
solutions.

Two players submitted a majority of the solutions. One player solver 221 problems and
another player solver 133 problems. Since players are annonymous, we were not able to con-
tact players. We investigated their submissions, and they submitted complex formulas within
seconds are opening the problem, so we assume that they built a bot that uses a Horn solver
to generate correct solutions. While this is against the idea of crowdsourcing, we are exited to
see people trying to game our system and use it as a resful service.

So far, only the classical Horn problem EvenOdd could be solved by the crowd. Manual
investigation of the remaining correct solutions revealed that the provided solutions indeed
pointed into the right direction, but the subset of predicates that the user could influence was
not sufficient to direct the Horn solver in the right direction. We did an in-depth analysis of
several provided solutions and why they did not help to solve the underlying Horn problem.
We identified four main problems in our design which we discuss below:

Encoding of Benchmarks. Encoding of clauses is crucial for humans to understand the
clauses. For some of the SMT2 files, clauses used predicates with more than 50 parameters.
While the clauses did not use all the parameters, the problems became almost unreadable.
Few users even tried to solve these problems because the visual representation was just too
discouraging. This could easily be avoided by introducing additional (local) predicates that use
less variables. However, striking a good balance between a rewriting that is suitable for human
consumption and that does not affect the Horn solver in a negative way is future work.

Task generation. For our experiments, we decided to only create tasks from the predicates
that were assigned in the last unrolling of the Horn solver and to only present clauses to the user
that contain these predicates (and instantiate all other predicates). For many tasks, this turned
out to be a bad heuristic for two reasons: First, the predicate assigned in the last unrolling
of the Horn solver might not be the one that needs fixing. Maybe an earlier assignment was
bad and the user has no way of fixing the problem without touch this predicate. In particular,
stopping the solver with a timeout gives us little control about where we stop. In the future,
we need to mitigate this by either creating problems from multiple past unrollings, or to search
for a particularly promising unrolling.

The second problem is that Horn clause solver tend to get stuck while searching for a fixpoint
for a set of clauses with circular definition. If the subset of clauses that we use to generate the
task does not contain all clauses of this circular definition, it hard to find, or even express that
fixpoint. Several user complained that they could see that there is a recursive definition, but
that one clause was missing, or that they could have solved it if they were allowed to edit other
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predicates. That is, in the future, we will experiment with different strategies to pick clauses
during the task generation.

Trivial answers. One of the first things that users try is if they can get away with trivial
answers like false or trivial contradictions. When only presenting a subset of clauses, this is
often the case. One way to avoid this problem is to check if the solution is satisfiable, but
even then, users quickly find other ways of producing cheap answers, like repeating parts of
the clauses. In the gamification setting, this can be tolerated but for payed crowdsourcing we
need more mechanisms to ensure that players don’t get payed for useless submissions. That
is, we need checks that the solution is not trivial and that it is different from things the solver
might have tried already. In the future, we will investigate how we can generate easily checkable
restrictions for user-provided solutions.

Finding a cost effective solution that reduces the risk of getting (and checking) redundant
or trivial answers, but that scales to large numbers of users is a challenging problem. A simple
pair-wise comparison of submitted solutions quickly becomes impractical.

Moving in circles. Since we do not enforce that users submit answers that are strictly
stronger or weaker than the last known assignment to a predicate, our search for a solution is
not monotonic and thus we may get stuck in loops where we repeatedly generate equivalent
tasks without making any progress. As for the trivial answers, this becomes an issue when users
are paid for contributions. While this problem is not entirely avoidable due to the undecidability
of the problem, we can ensure a certain progress by keeping track of previous solutions and
tasks. We can check if one task is implied by a previous task before adding it to the database,
and we can require the user to strengthen or weaken a known solution, instead of providing and
arbitrary new result.

Summary. We have presented and implemented a crowdsourcing solution to assist Horn
clauses solving. The approach is easy to implement and, due to the versatility of Horn clauses,
can be applied to a multitude of verification problems. Building on top of Horn clauses elimi-
nates many problems that previous crowdsourcing approaches faced, like controlling the diffi-
culty of tasks and checking user-provided solutions efficiently.

While progress cannot be guaranteed, simple book keeping can help to avoid the creation
of redundant tasks, and can disallow irrelevant answers.

Our initial assumption that we do not need to constrain the type of Horn clauses turned
out to be problematic since there are limits to what humans are willing to solve. While our
current system does not solve this problem, we have outlined some strategies in this discussion
to mitigate the problem.

5.2 Threats to Validity

Before we can make any conclusions about the value of crowdsourcing for Horn solving and
abduction we need to conduct a larger experiment. The current evaluation is only a feasibility
test. In the future, we plan to perform a larger experiment where we control the skill level
of users and distinguish the different type of Horn clause problems. Our assumption is that
this approach shows its full potential for small but complicated Horn problems and with an
audience that has a strong mathematical or puzzle solving background (rather than computer
science). However, before we can run such a large study, more small experimentation like in
this paper is needed to mature the work flow of the system and the presentation of problems.
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6 Related Work

As discussed in the introduction, several projects investigated the idea of crowdsourcing ver-
ification tasks [7, 8, 12, 13, 21, 23, 30]. The main focus of these projects is to investigate to
gamification potential and how to create a problem representation that is appealing to gamers.
We are interested in the more general question of how verification problems can be translated to
crowdsourcing problems. That is, what is a suitable methodology to split a verification problem
into crowdsourcable tasks, how the solutions can be checked efficiently, and how solutions can
be utilized efficiently. In this paper, we do not attempt to make the problem representation
visually appealing but we acknowledge that a better presentation is key to get a larger user
base.

Keeping a human in the loop is a common practice in verification. For example, Ivy [27],
generates graphical representations of counterexamples from infinite-state system proofs which
then need to be generalized by the user. Unlike our approach, their work requires a certain
degree of expert knowledge about verification and, in particular, knowledge about the system
under verification. Interactive verification environments such as PVS [25], Isabelle [24], or
Coq [2] are also similar in that they seek guidance from the user only if automated reasoning
gets stuck. However, these systems require expert knowledge of the task at hand and an idea
of the bigger picture and are thus hard to crowdsource.

The survey in [22] names several applications of crowdsourcing in software engineering,
such as software construction, documentation generation, or bug finding, and names some
examples of commercially successful crowdsourcing in this domain. These approaches are very
different from the task proposed in this paper, but their results and the success of platforms
like Bountify, Upwork, and TopCoder suggest that there is a sufficiently large group of qualified
workers available to scale our approach.

Another direction for seeking outside help in verification is the combination of formal ver-
ification and machine learning. Pioneered by the Daikon tool [11], and followed by a steady
stream of research. These tools learn program properties, usually in the form of invariants.
All these approaches need data points from different executions and apply different learning
techniques, such as decision trees [20], ice-based learning [14], or deep learning [26], to infer an
invariants or refinement types [31]. The motivation of these approaches is similar: get help from
the outside when verification gets stuck. But the approach is different in that our approach
tries to utilize the human which only makes sense if time is not an important factor. On the
other hand, our approach does not need concrete states and is thus easier to implement.

7 Conclusion

We have presented a theoretical framework how crowdsourcing can assist Horn solvers. The
central idea is that Horn solvers can get stuck when searching for a symbolic model because
they fail to identify connections between variables that are not explicitly named in the clauses.
This can be expressed as an abduction problem which is know to be hard to solve automatically.
Humans can have an edge over machines in this task because they can draw from experience
when adding missing information and their ability to abstract irrelevant information quickly.

We demonstrate that the Horn clause formalism nicely address many key problems in crowd-
sourcing of how to split problems into tasks, how to control the difficulty of tasks, how to check
solutions to tasks, and how to utilize these solutions to solve a problem. All these problems have
a straightforward solution in the Horn clause mechanism and we demonstrate that crowdsourc-
ing seamlessly integrates with the Horn solving process and discussed a prototype implemen-
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tation. We show that our prototype works and identify several engineering and presentation
challenges that need to be addressed before the approach becomes useful in practice.

We do not want to overstate the applicability of crowdsourcing: Crowdsourcing is a very
slow process; we have no influence on how long it takes until a smart user gets assigned to the
problem that we are interested in. And crowdsourcing can only work if there is a solution in a
logic that is decidable by the Horn solver. Hence, we emphasize that the presented approach
only makes sense in domains where we need to verify large amounts of problems that are
not time critical and for which we assume that they are solvable. However, for these cases,
crowdsourcing can indeed achieve quasi-automation. And, depending on the user interface,
the generated tasks may even have an educational aspect to teach users about Horn clauses,
implications, and logical abduction.
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