
Multistaging to Understand: Distilling the Essence
of Java Code Examples

Huascar Sanchez
SRI International

Email: huascar.sanchez@sri.com

Jim Whitehead
University of California Santa Cruz

Email: ejw@soe.ucsc.com

Abstract—Programmers commonly search the Web to find
code examples that can help them solve a specific programming
task. While some novice programmers may be willing to spend
as much time as needed to understand a found code example,
more experienced ones want to spend as little time as possible.
They want to get a quick overview of their operation, so they can
start working on them immediately. In this paper, we introduce
a technique that helps them accomplish that. Our technique
automatically reveals interesting segments of code in an easily
understood sequence. These segments can be explored non-
sequentially; enabling exploratory learning. We discuss the key
components of our technique and describe empirical results based
on actual code examples on StackOverflow.

I. INTRODUCTION

We define the essence of a code example as a set of
cohesive chunks of behavior that convey the most important
aspects of the example’s intended function. The essence of
a code example is related to the example’s decomposition,
and thus, a key factor in overall code understanding. We
call the decomposition of a code example into these chunks,
distillation. Distilling a code example’s essence is a process
likely to play a significant part in code foraging activities.

Programmers who forage code on the Web have some
intuitive notion of this distillation concept, and frequently use
it to get an overview of unfamiliar code examples’ operation
[1]. While this act of distilling code examples’ essence can be
invaluable to programmers, it is still a cumbersome act [2].
This represents a problem for programmers wishing to get a
quick overview of code examples’ operation. We address this
problem in this paper.

A. Accuracy versus Efficiency
When programmers find code examples online, they often

go outside the Web browser to experiment with them in an
editor. They do that before fully understanding the included
code samples [2]. This premature form of reuse might neg-
atively affect programmers in multiple ways [3], such as the
loss of the example’s context and understanding.

Although there are tools that try to bridge the gap between
the Web browser and the editor to re-establish context [4],
[5], they all critically rely on humans for making distilling
decisions. The rationale is that humans are better and more
accurate at making these types of decisions. The downside of
relying entirely on humans is that the distillation process is
still time-consuming. This clashes with our goal of making

the distillation process quick and easy. If we can automate the
distillation process, right at the original Web page, and then
present the distilled code, then we can help programmers com-
plete their code understanding tasks quickly and accurately.

One way to speed up the distillation process is through
multistage code examples [6]. Multistage code examples have
their functionality broken into discrete chunks of behavior,
called code stages. Each code stage is self-contained and builds
upon, and in relation to, preceding code stages. Together, they
provide an optional and yet accessible roadmap of the code ex-
ample. By following this roadmap, their learners can complete
their code understanding tasks quickly and accurately.

B. Our approach

We approach the distillation process by automatically mul-
tistaging code examples. Specifically, we decompose a code
example into a series of discrete chunks of behavior. This
decomposition continues to the point where a chunk cannot
be further decomposed. Non-Decomposing chunks are called
prime subsets of behavior. The resulting chunks are self-
contained and thus can be accessed non-sequentially.

Following the distilled code suggests a form of code inspec-
tion we call Multistaging to Understand (MTU). By adopting
this form of inspection, programmers are directed to specific
units of functionality that might be of interest. Programmers
can explore these units in any order; enabling some form
of exploratory learning [7]. Similar to other code reading
techniques [8], MTU is useful if the code is poorly specified, as
it is often the case for online code examples [9]. Unlike these
techniques, the identification of the prime subsets of behavior
is done automatically, based on the source code’s content.

The key problem in content-based multistaging is determin-
ing the minimal set of declarations 1 that are required for each
code stage to compile properly. This problem is magnified by
the ambiguities in code examples [10]. We use an algorithm
called MethodSlicing for decomposing code examples into an
ordered set of code stages. The algorithm doesn’t place any
limitations on the completeness of code examples, as its input
code is packed with the code elements needed for its proper
operation (see IV-B for details). The only limitation is that the
input code must be written in Java.

1Declarations bind identifiers to elements in the source code; e.g., variables,
methods, and class hierarchy declarations.

Whereas previous work has considered authoring multistage
code examples using either direct editing and editable code
histories [5], record and replay of code-based tutorials [11],
or annotated code tours that highlight important code locations
[12], we propose something different. We propose that code
stages can be algorithmically discovered by statically analy-
zing the examples’ Java code.

Our multistaging approach is implemented atop the Ves-
perin system [9]. Vesperin is a system for curating online
Java source code. At a high level, Vesperin consists of two
main components: a Chrome extension (named Violette) for
allowing developers to actually modify code examples in their
original Web page, and a RESTful service (named Kiwi) for
managing curation and snippet parsing operations. Together,
they provide a mechanism by which developers can examine
Java code examples through source code curation.

C. Contributions
The technical contributions of our work are as follows:

1) We introduce two algorithms for distilling Java code
examples’ essence, called MethodSlicing, and Method-
Slicing with Reduction.

2) We introduce a form of code inspection, called Multistag-
ing to Understand.

3) We implement a prototype atop the Vesperin system.
This prototype implements our technique and assists
programmers with their code understanding tasks.

4) We explore our technique’s effectiveness experimentally.
The remainder of the paper is organized as follows: Section

II describes a MTU session. Section III introduces the Mul-
tistaging Problem and how to solve it. Section IV describes
its architecture. Section V presents its evaluation. Section VI
summarizes related work. Section VII concludes.

II. MULTISTAGING TO UNDERSTAND

The idea behind MTU is that, as the programmers non-
sequentially inspect a few of the generated code stages, their
functionality is mentally abstracted, and then combined to
understand the intended function of a code example. This
section walks the reader through a MTU session (summarized
in Figure 5). In the remainder of this section, we will refer to
the programmer using our technique simply as Bella.

To facilitate presentation, we make certain assumptions on
the used code example; e.g., complete code and compiling.
Any deviation from these assumptions will not affect the
applicability of our technique, as indicated in Section IV-B.

Figure 1 shows the first step. This step takes as input a
query describing Bella’s information need. Bella then issues
this query to a Web search engine. The Web search engine
returns a set of generated results (see Figure 2). At this point,
Bella selects the first result. She does that to examine the
result’s code example 2 (see Figure 3).

Bella uses Violette to create a new scratch space for the
found code example. This is only possible due to it being

2Available at http://stackoverflow.com/q/29802290#29802635.

Fig. 1. Search for a code example that finds the smallest number in an array
without using sorting.

Fig. 2. Generated results by Web search engine.

Fig. 3. Smallest number in array code example.

hosted on StackOverflow. Then, she presses the Stage button.
Violette responds to this action by asking Kiwi to multistage

the code example. Kiwi returns 3 generated code stages
(illustrated in Figure 4).

Fig. 4. Generated code stages (green buttons).

After reading the labels of the generated code stages, Bella
builds a general hypothesis about the nature of the code
example. Using the fact that code stages are self-contained
and can be accessed in any order, Bella clicks the first code
stage that comes to her mind. This is the Get Pivot Index

code stage (see Figure 5a).
Bella then skims getPivotIndex’s method signature and

starts refining her general hypothesis about the code example.
She hypothesizes that getPivotIndex’s function is to get an
index between two indices (i.e., left and right).

With this new hypothesis in mind, she inspects the visible
code blocks in the code stage (see Figure 5a), opening any
hidden code blocks as she goes along. The first hidden block
she opens is the one located at line 7 in Figure 5b. The code
inside this block is responsible for incrementing the left index
as long as this index is less than the pivot value (calculated
in line 5). She uses this information to deduce the function of
the next hidden code block, located at line 8 in Figure 5b. The
elements in this block are responsible for navigating a list of
integers from right to left.

After having verified the function of the two code blocks,
Bella notices certain similarities between the getPivotIndex
method and the Quicksort’s Partition method. She uses this
information to guess the function of the next hidden code
block, which starts at line 11 in Figure 5c. The function of
this hidden code block is to swap elements in a list of integers
only if the left index is less than the right index.

At this point, Bella is getting the hang of inspecting code
stages. Consequently, she approaches the Select code stage
in the same way (see Figures 5d, 5e, and 5f).

After having inspected the Select code stage, and learned
its function, Bella feels she has achieved her desired com-
pression level. As a result, she skips the Main code stage and
then combines all her gained knowledge to determine the code
example’s function. The function is to find the kth smallest
element in a list using continuous list partitioning and careful

recursive calls. She now thinks she can use this example in
her own work. This ends the MTU session.

III. THE MULTISTAGING PROBLEM

The goal of multistaging code examples is to reveal seg-
ments of code in an easily understood sequence. We generalize
this problem as follows:

Problem 3.1: The Multistaging Problem. Given a code
example’s abstract syntax tree (AST), with a set of n method
declarations D = D1 [D2 · · · [Dn, compute an ordered set
of code stages {S | S ✓ D ⇥D }, such that each code stage
s 2 S builds upon, and in relation to, preceding code stages;
i.e., si sj , si precedes sj , where i, j = 1, . . . , |S|.

In this problem, the first code stage of a Java code example
always lacks a preceding code stage. As such, without loss
of generality, we add a special null code stage to the set S;
called s;. The preceding code stage of s; is itself.

Unlike the work in [5], we consider a code stage as a group
of code fragments that captures a prime subset of the behavior
found in the Java code example. Whenever a code stage is
generated, a composition relationship is established between
the new code stage and a previous code stage. For example,
the Select code stage (see Figure 5f) contains a method
from the Get Pivot Index code stage (see Figure 5a). We
generalize these insights using the notion of Code Stages
(See Definition 3.1). This definition simplifies the multistaging
process, as we describe it later in this section.

Definition 3.1: Code stages. Code stages are a set of subsets
of behavior found in a code example, such that

• Each subset contains a method or a set of collaborating
methods 3.

• Each subset builds upon, and in relation to preceding
subsets.

• Code stages enumerate all the subsets with the above
properties.

We describe an algorithm for multistaging Java code exam-
ples in Section III-A. To facilitate presentation, we consider
the same Java code example used in Section II.

Figure 7 illustrates the computed Code Stages, sorted in
ascending order by code stage length. The length of a code
stage is determined by its number of lines of code (LOC). In
the next section, we show how to compute these code stages.

A. MethodSlicing
In this section, we introduce MethodSlicing. MethodSlicing

is an algorithm for solving the Multistaging Problem (de-
scribed in Problem 3.1). At a high level, MethodSlicing takes
an AST as input, statically analyzes it, and then slices it into
Code Stages. Based on the Definition 3.1, the Code Stages are
modeled as a set of tuples containing one or more collaborating
methods. Figure 6 describes MethodSlicing.

While the general algorithm may apply to any object-
oriented language, some of the details (and used libraries) are
tied to the specifics of the Java language. For example, we use

3Collaboration is established through method invocations.

(a) Step 1. (b) Step 2. (c) Step 3.

(d) Step 4. (e) Step 5. (f) Step 6.

Fig. 5. Multistaging to Understand session. Unfolded code blocks are highlighted.

Algorithm METHODSLICING(p) // AST p
S ; [{s;} // Code stages
for each method m 2 p do

B ; [GetAllAstNodeBindings(m)
d ; // declarations set
for each binding b 2 B do

d[b] p[b] declaring node
end for
s ReconstructSourceCode(p, d)
S [{s}

end for
sort S in ascending order
return sorted S

end Algorithm

Fig. 6. Pseudocode for MethodSlicing.

Vesperin’s source code curation utilities to parse, manipulate,
and reconstruct Java code.

MethodSlicing uses two subroutines (illustrated in Figure 8,
and Figure 9). GetAllAstNodeBindings subroutine (Figure
8) collects binding information of AST nodes. This subroutine
uses Vesperin’s traversal utilities to walk the AST node repre-
senting a method declaration. During this walk, it collects the
binding information for variables, fields, parameters, packages,
methods, and inner class (or nested) declarations used within
that method declaration. The declarations corresponding to
these bindings are then obtained for later use in the algorithm.

We model binding information as a set of n tuples made
of name-and-ASTNodeType pairs; e.g., (name, nodetype)1

. . . (name, nodetype)n, where n is the number of named
entities in a Java code example. For example, a Java package
java.util.Scanner is modeled as (Scanner,package).
ReconstructSourceCode subroutine (Figure 9) uses Ves-

perin’s code transformation utilities to reconstruct a code
stage’s source code based on the obtained declarations and
the AST.

MethodSlicing iterates over the methods in an AST in the
exact order 4 they were written in the code example. For each
method, it collects the binding information of its children,
as well as the binding information of collaborating methods.
It then specifies the content of a code stage (see Figure
6) by getting the AST node declarations of each method’s
local bindings B. For example, getPivotIndex’s
B is: {(List,package), (SmallestNum,type),

(getPivotIndex,method), (left’,parameter),

(right’,parameter), (list’,parameter),

(pivot,variable), (temp,variable).
The above elements represent the content of Get Pivot

Index code stage. This code stage includes the SmallestNum
class declaration, the getPivotIndex method declaration,
and getPivotIndex’s children. See the reconstructed source
code of the Get Pivot Index code stage in Figure 7.

MethodSlicing’s divide and conquer approach for distilling
code examples’ essence can be beneficial during code com-
prehension tasks. However, there is one caveat that can hinder

4The ordering of the methods in the AST is irrelevant to the algorithm, as
it always converge to unique Code stages.

(a) Code stage 1. (b) Code stage 2. (c) Code stage 3.

Fig. 7. One application of MethodSlicing against the SmallestNum code example.

function GETALLASTNODEBINDINGS(p) // AST p
V,S,R ;
W {target node types}
S [p.root

while S is not empty do
u pop S
continue unless u /2 V
V [{u}
for each child node w 2 u do

R [{binding of w} if w 2W
S [{w}

end for
end while
return R // Set of bindings in p

end function

Fig. 8. GetAllAstNodeBindings subroutine.

function RECONSTRUCTSOURCECODE(p, d)
// delete declaration nodes {p \ d} from AST p

p

0 p \ {p \ d}
return source code for p0

end function

Fig. 9. ReconstructSourceCode subroutine.

its effectiveness: produced code stages might consist of long
methods 5. Long methods tend to take more time to understand
than small methods [13]. Consequently, code stages with long
methods (i.e., large code stages) might be difficult to digest
by those programmers wishing to obtain a quick overview of
their operation.

To address this issue, we investigated the obstacles program-
mers faced when inspecting the large code stages produced by
MethodSlicing. We discovered that most of the issues were
related to the navigation of the code stages’ content. One way
to deal with these issues is via code folding. The efficiency of
code folding on browsing tasks was validated by Cockburn et
al. [14].

In line with our findings, we extended MethodSlicing to
automatically reduce large code stages (via code folding)
whenever possible. Reduction in MethodSlicing shows the

5Methods with size close to or beyond 15 LOC.

code elements that are most informative (i.e., with high usage
score) and hides (i.e., folds) the ones that are less informative
in each code stage. However, these hidden elements are easily
accessible if one chooses to see them. This technique is
described in the next section.

B. MethodSlicing with Reduction
Programmers dealing with large code stages are often con-

fronted with the consequent information overload problem. We
can reduce this problem by automatically reducing them. The
rationale is that reduced code stages can be easily digested
by programmers wishing to get a quick overview of their
operation.

We make reduction decisions in MethodSlicing entirely
based on examples’ source code structure. Our approach is
consistent with how human abstractors approach inspecting
unfamiliar source code [1]. When inspecting an unfamiliar
source code, they extract code fragments according to the
hierarchical structure of control flow units present in the source
code [15], [16]. This structure can be described as a series of
interconnected code blocks. Each code block has an associated
usage score. We compute the usage score of a code block using
Equation 1. The usage score of a code block is representative
of the demand of its elements throughout the code example.
The usage frequency of each element in a code block is the
number of times this element appears in a code stage. As a
result, we use the code blocks’ usage score to show the blocks
with a higher demand and hide those with a lesser demand.

UsageScore(B) =

P
elem2B UsageFreq(elem)

TotalChildren(B)
(1)

For example, given a nested code block at line 11 in Figure
5c, we first collect its children: temp, list, left, and right.
Second, we compute each child’s usage frequency: 2, 7, 10,
and 9. Lastly, we put it all together and calculate the nested
code block’s usage score: (2 + 7 + 10 + 9)/4 = 7.

We cast the problem of reducing large code stages as an
instance of the Precedence Constrained Knapsack Problem or
PCKP [17]. This problem is specified herein.

Problem 3.2: Code Stage Reduction. Given a set of code
blocks B (with weight wb and profit pb per block b 2 B), a

Knapsack capacity W , a precedence order O ✓ B⇥ B, and a
set of constraints C, find H⇤ such that H⇤ = B \ X ⇤, where
wb = number of lines of code in b, pb = UsageScore(b),
X ⇤ = arg max {

P
b2B pb}, and X ⇤ satisfies the constraints

in C. The constraints in C include:
P

b
j

2B wb
j

 W , where
bi bj (bi precedes bj) 2 O, and i, j = 1, . . . , |B|.

Similar to Samphaiboon et al. [17], we solve this problem
by using dynamic programming. Our solution generalizes the
code stage reduction problem, also taking into account a
precedence relation between code blocks in a code stage. We
build a Directed Acyclic Graph (DAG) to represent such a
relation, where nodes correspond to code blocks in a one–
to–one fashion. This relation is expressed as a composition
relation between code blocks. For instance, a code block k�1
precedes a code block k, if code block k�1 contains the code
block k. We build this DAG when traversing a code stage’s
AST. Specifically, we visit all the code block nodes in the AST,
add them to the DAG, and then return this DAG.

In this DAG, each visited code block has a profit (i.e.,
the usage score of a code block) and a weight 6 (i.e., the
number of lines of code in the code block). Our solution’s
Knapsack has a fixed capacity (i.e., total number of lines of
code to be displayed in the reduced code stage). So, given a
code stage and a capacity, our solution automatically reduces
a code stage. It does it by identifying the location of non
essential code blocks; i.e., those code blocks that if added to
the solution would exceed the fixed Knapsack’s capacity (see
H⇤ in Problem 3.2). The value of this capacity is tunable. We
selected it based on feedback from our user studies.

function RECONSTRUCTSOURCECODE(p, d)
// delete declaration nodes {p \ d} from AST p

p

0 p \ {p \ d}
DAGp0 traverse p

0 and then get built DAG
H⇤ computes Bp0 \ X ⇤

p0 using DAGp0 and a given W
return source code for p0

end function

Fig. 10. Updated ReconstructSourceCode.

We extend ReconstructSourceCode to include the code
stage reduction step. Figure 10 sketches this step. Our solution
is based on the following recursive formula:

X ⇤[k,w] =

8
<

:

X ⇤[k - 1, w] wk > w
max(X ⇤[k - 1, w],
X ⇤[k - 1, w - wk] + pk)

wk w ^ k � 1 k
(2)

This recurrence (see Equation 2) determines the set X ⇤,
which has a total weight w, where w W . In the first case,
a block k cannot be part of the solution since the total weight
will be greater than w. In the second case, a block k can be in
the solution, and we choose the case with greater value only
if there is an edge between a previously chosen block k � 1
and the current block k.

6Code blocks enclosing other code blocks have their weight calculated and
distributed among their enclosing code blocks. For example, if a code block A
surrounds two code blocks B and C, then wA = wA

original

�(wB+wC).

We use the same code example of Section III as input for
MethodSlicing with Reduction. The Knapsack capacity is 15
LOC. We illustrate its output in Figure 11. This figure shows
smaller and nicely decomposed code stages. In the next section
we describe our code example multistager’s architecture.

IV. MULTISTAGER ARCHITECTURE

Figure 12 shows the architecture of our code example
multistager. This multistager implements the MethodSlicing
with Reduction algorithm. This figure shows two execution
paths of the multistager, and its relation with Vesperin [9] and
its two main components: Violette and Kiwi.

A. Multistaging Requests
Consider the architecture illustrated in Figure 12. At any

time, during a code example’s inspection, programmers may
use this multistager through Violette’s interface. Programmers
can press the Stage button. Violette follows this action by
issuing a remote call to Kiwi requesting the example’s Java
code to be decomposed into an ordered set of code stages.
Kiwi reacts to this call by first packing the example to generate
its AST. Then, it multistages it with code stage reduction in
mind. Lastly, it ships the generated code stages back to the
caller. In a non-error path, Kiwi’s reply contains a set of code
stages (including H⇤). Otherwise, it contains a set of warnings
describing a failed multistaging attempt.

B. Packing Code examples
To correctly multistage Java code examples, we must pro-

duce an AST representation of their code. Code examples
are often partial and non-compiling programs. Consequently,
producing an AST of a partial program that can be multistaged
is difficult. Especially if the local information present in their
code is incomplete, and thus insufficient for resolving all their
bindings at compile time.

To address this problem and thus guarantee multistaging, the
multistager performs a four step process, called Codepacking.
Codepacking’s goal is not about achieving program correctness
but approximating program completeness. First, it surrounds a
code example with the appropriate body declarations (class,
method, or both), if needed. Second, it cross references
missing type information of existing ill-typed expressions [18]
with a repository of pre-acquired API information and then
suggests their well-typed corrections. Third, it uses Vesperin’s
code transformation utilities to add the suggested corrections
to the example’s code. Fourth, it produces the desired AST.

Briefly, we model APIs in the repository as tuples in
T ⇥ L ⇥ T ⇥ · · · ⇥ T , where the first T represents the
return type of a public method, the L represents its labels,
the second T represents the type of its receiver object 7, and
the rest of the elements represent the types of its arguments.
Labels are strings of characters that we used to refer to
either a particular type or method in the repository. For ex-
ample, a static Java method static double ceil(double

x) of java.lang.Math is modeled as (double, (math,

7 Public static methods’ receiver object is prepended with static: keyword.

Martin Schäf

(a) Reduced Code stage 1. (b) Reduced Code stage 2. (c) Reduced Code stage 3.

Fig. 11. Reduced large code stages. Knapsack capacity is 15. The . . . symbol represents folded areas.

Fig. 12. Code example multistager’s architecture.

ceil), static:java.lang.Math, (double)). We used
information about the code elements in 4 popular APIs on
StackOverflow to bootstrap the repository: (1) Java 1.6, (2)
Guice, (3) Apache commons, and (4) Guava. This repository
contains 6, 436 types, 42, 164 methods, and 751, 856 labels.

In what follows, we describe MTU’s experimental evalua-
tion. We describe the used methodology, discuss the results,
and then describe how we mitigated threats to the validity.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate MTU. We assume that one of
the factors that influences comprehension time and accuracy
in Java code examples is code size. Code size dictates how
long a programmer spends inspecting an example’s Java code.
Consequently, it’s important to test MTU using code examples
with varying sizes.

We have two null research hypotheses:
H0,accuracy,X,Y . MTU does not increase the accuracy of
answers to questions regarding abstractions X for code
examples of size Y .
H0,reviewing�time,Y . MTU does not reduce the reviewing
time of code examples of size Y .

The rejection of H0,accuracy,X,Y and H0,reviewing�time,Y

hypotheses would lead to the acceptance of two alternative
hypotheses, which state: (1) MTU increases comprehension
accuracy with regards to the creation of abstraction X for
code example of size Y ; and (2) MTU reduces reviewing time
of code examples of size Y .

Our experimental set-up is exploratory. Based on [19], we
assume a significance criterion ↵ of 0.10. This indicates a 10%
probability of concluding that a group difference exists when
there is no actual difference.

A. Experimental Design
12 participants were recruited using Upwork, a popular

crowdsourcing service. Subjects had previous programming
experience with Java, used code foraging, used StackOverflow,
and had limited experience with code inspections.

The subjects were split into two groups (control and treat-
ment) of 6 participants, where each group contained subjects
with the same mix of abilities (per their Java experience
stated in their professional profiles at Upwork). Each group
then focused on one technique, and was aware of the other
technique, since the experimental processing was previously
explained to them. Specifically, the treatment group applied
MTU, while the control group applied the Read to Understand
(RTU) technique–a technique that involves reading a given
source code to steer understanding.

We used a crossed factorial design with two factors to test
MTU. This design is balanced. Table I illustrates the details
of this design. We use MTU and RTU as the between-subjects
factor. Then, we use the Java code examples’ size (short,
medium, long) as the within-subjects factor, where (1) the size
of a short code example is between 35 and 70 LOC; (2) the
size of a medium code example is between 70 and 140 LOC;
and (3) the size of a long code example is greater than 140
LOC. We exposed the participants in each group to all code
example sizes, and applied the assigned inspection technique
during each run.

We have two independent variables and two dependent
variables. Our independent variables are the program compre-
hension technique, and the size of Java code examples (short,
medium, long). Our dependent variables are the response
accuracy, and the code example reviewing time.

To control extraneous factors, such as systematic perfor-
mance differences (e.g., Java programming experience) be-
tween the treatment and control groups, we formed blocks
of participants with similar levels of Java programming expe-
rience. Specifically, each group had 2 novice, 2 proficient, and

Martin Schäf

Martin Schäf

Martin Schäf
What do they do with these techniques?

2 expert Java programmers. This setting assures two things:
(1) the overall performance of the two groups is expected to
be equal, and (2) each participant in a group has a counterpart
with similar abilities in the other group.

TABLE I
CROSSED FACTORIAL DESIGN

Size MTU RTU

Short Group 1 – run 1 Group 2 – run 1
Medium Group 1 – run 2 Group 2 – run 2

Long Group 1 – run 3 Group 2 – run 3

B. Experimental Materials

All the materials used for this experiment
are available at the experiment’s Web page:
huascarsanchez.com/experiments/multistaging.

1) Code Examples: Java was the language chosen for the
code examples, being both the language with which the sub-
jects had the most experience and the only language supported
by Vesperin. We used 3 code examples:
(1) stackoverflow.com/q/26818478#26819260,

(2) stackoverflow.com/q/14210307#14210519, and
(3) stackoverflow.com/q/5317329#5843759

We sorted a pool of 50,000 question and answer (Q&A)
pages from StackOverflow 8 into 3 size categories: short (⇠50
LOC), medium (⇠135 LOC), and long (⇠200 LOC). Then, we
randomly selected the examples from each size category.

2) Program Comprehension Questions: Our comprehen-
sion questions are open-ended questions and are variants of
closed-ended questions proposed by Pennington [15]; one for
each program comprehension aspect: (1) Function, (2) Oper-
ations, (3) Control Flow, (4) Data Flow, and (5) State. Please
refer to the experiment’s Web page for access to our program
comprehension questions.

Table II presents a list of generic questions for evaluating
the different abstractions of Pennington’s model (label (c)),
and their open-ended variants respectively (label (o)).

TABLE II
CLOSED AND OPEN ENDED QUESTIONS

Abstraction Program Comprehension Questions

Control Flow (c) What is the sequence of execution? (o) Describe
in pseudo-code an execution sequence.

State (c) What is the content of a data object at some point
of execution? (o) Describe the composition of the
data object at some point of execution.

Operations (c) What does the code compute? (o) Describe the
need of data object in a sequence of execution.

Data flow (c) What does the code compute? (o) Describe when
a data object gets updated in an execution sequence.

Function (c) What is the overall functionality? (o) Describe
what functionality is implemented in an execution
sequence.

8Please refer to the experiment’s Web page for access to this Q&A dataset.

3) Response Accuracy Rating Scheme: We use Du Bois’s
rating scheme [19] to evaluate answers to our open-ended
questions. We chose this rating scheme because it could
identify objective differences in response accuracy of open-
ended questions. We rated the response accuracy of our open-
ended questions in four categories:

• Correct Answer. Included all pertinent information.
• Almost Correct Answer. Missed minor details.
• Right Idea. Missed important details.
• Wrong Answer. Missed all pertinent information.
There is a clear difference in distance among the above

types of answers. Consequently, Du Bois’s rating scheme rated
a correct answer as 10, an almost correct answer as 8, a right
idea as 5, and a wrong answer as 0 respectively. Moreover,
the rating scheme makes no distinction among responses in
the same category as this could lead to highly subjective
differences.

Participants were graded randomly and anonymously in
order to minimize bias. Once all the assessments were com-
pleted, the results were sorted back into the respected groups.

C. Experimental Procedure

We evaluated our technique based on the program compre-
hension aspects mentioned in Section V-B2.

Participants were introduced to our experimental procedure
at the start of the experiment. We also gave them an overview
of the goals and guidelines for their assigned comprehension
technique. We asked them to spend their time wisely, stay only
at the code example’s Q&A page, and stick to the assigned
task. Please refer to the experiment’s Web page for additional
information about goals and guidelines.

The experiment comprises three program comprehension
tasks. Each task was divided into two parts: A multistag-
ing/code reading part and an answering comprehension ques-
tions part. After the introduction and overview, we asked the
subjects to start the tasks.

D. Discussion of Results

We discuss in this section the results of our experiment.
Specifically, the group differences with respect to our two
research hypotheses.

1) H0,accuracy,X,Y , Response Accuracy: Contained within
Table III are the results of our analysis concerning the response
accuracy for both groups. We use “number – number p-
value=number” as the format to represent the results in each
cell, where the first number represents the average response
accuracy of the MTU group, the second number the average
response accuracy of the RTU group, and the third number
the p-value for the one-sided paired t-test. Since our null hy-
potheses are directional, we use these t-tests to verify whether
the MTU group shows higher accuracy in their answers to our
comprehension questions than the RTU group.

Also illustrated in Table III are the rejection of our null
hypothesis (H0 columns). R stands for Rejected (p < .10),
and AR stands for Almost Rejected (.10 < p < .12).

http://huascarsanchez.com/experiments/multistaging
Martin Schäf

Martin Schäf

http://stackoverflow.com/q/26818478#26819260
http://stackoverflow.com/q/14210307#14210519
http://stackoverflow.com/q/5317329#5843759

TABLE III
AVERAGE RESPONSE ACCURACY

Short H0 Medium H0 Long H0

Function 6.83 - 3.33
p=0.0037

R 7.17 - 3.83
p=0.0509

R 7.67 - 5.00
p=0.0534

R

Control Flow 8.50 - 6.83
p=0.0525

R 7.17 - 4.33
p=0.1984

8.17 - 4.33
p=0.0204

R

Data Flow 8.67 - 6.17
p=0.0462

R 5.33 - 3.00
p=0.2308

8.50 - 6.00
p=0.1199

AR

State 8.67 - 7.00
p=0.0873

R 7.67 - 5.67
p=0.1594

9.00 - 6.50
p=0.0971

R

Operations 7.33 - 3.33
p=0.0595

R 7.83 - 4.83
p=0.0609

R 6.50 - 3.00
p=0.0549

R

Table III shows notable differences in response accuracy
averages between the groups, completely favoring the MTU
group. Since a critical performance component of our tool
is multistaging, the results also imply that the quality of
the produced code stages is equivalent (or better) to what
humans would produce. However, we noticed that some of
the p� values were still high for the medium code example.
Information gathered from subjects showed there were multi-
ple wrong answers in both groups. Moreover, it showed there
was a higher frequency of wrong answers in RTU group than
in the MTU group. This higher frequency caused a significant
variation, resulting in these high p-values.

We investigated the obstacles subjects faced when inspect-
ing the medium code example. By interviewing the subjects,
we discovered that most of the experienced issues were related
to deducing the intent of a few delocalized methods in the code
example [20]. The reason why this appears in the medium code
example is likely by chance. Delocalization appears when a
particular goal is implemented by lines of code that appear in
spatially disparate areas of the program. It has been shown by
[20] that the likelihood of a programmer correctly recognizing
a plan or intention in a program decreases as the lines of code
that realize it are spread out or delocalized in the program.
Reading code examples with delocalized plans or intentions
can be difficult to understand as it is time consuming to find
all the parts of the plan or intention and then figure out what
they do. Consequently, understanding is attempted based on
purely local information, resulting in confusion [21].

2) H0,reviewing�time,Y , Reviewing Time: Differences in
reviewing-time between both groups are reported in Table IV.
We use the format mentioned in Section V-D1 to represent
the results in each cell. We also use t-tests to verify whether
the MTU group shows shorter reviewing times than the RTU
group.

TABLE IV
AVERAGE REVIEWING TIME

Short H0 Medium H0 Long H0

Reviewing
time(sec)

475 - 745
p=0.0995

R 655 - 1022
p=0.0446

R 465 - 912
p=0.0284

R

Table IV shows shorter reviewing times (close to 50%
average reduction) by the MTU group, irrespective of delo-

calization. This table also includes the rejection of our null
hypothesis (H0 columns).

We gathered reviewing times from two sources. We used
Upwork’s time tracker to time the RTU group and Violette’s
time tracker to time the MTU group.

E. Threats to Validity
Threats to internal validity typically include the presence

of confounding factors that comprise the integrity of the
experimental results. We made every effort to minimize these
factors, but possibilities in this case can occur:

• Selection effects. These can occur through variations in
the natural performance of individual subjects. Subjects
were split into two groups of equal abilities (Java expe-
rience) in an attempt to minimize these effects.

• Maturation effects. These can occur when subjects react
differently as time passes. Tasks were similar and were
sorted by code example’ size in ascending order. Since
positive (e.g., learning) and negative (e.g., fatigue) effects
could not be ruled out, we introduced the tasks at the
beginning of the experiment to try to counteract these
effects.

• Loss of enthusiasm. Since subjects were involved in the
experiment for a total of two hours, it is possible that
subjects found this action repetitive, and thus their interest
dropped towards the end. We informed subjects of the
context of our research in advance in an attempt to
minimize these effects.

Threats to external validity limit the ability to generalize
any results from an experiment to a wider population. Our
efforts to minimize threats to external validity were minimal,
as the nature of our experiment was exploratory. Consequently,
possibilities of threats to external validity include:

• The subjects of the experiment (professional program-
mers recruited at Upwork) may not be representative of
the general software engineering population.

• The Java code examples may not be represen-
tative (in complexity or length) of the general
Java code examples found on StackOverflow. Inter-
ested readers can access these examples online at
stackoverflow.com/questions/tagged/java

VI. RELATED WORK

Our work builds on two primary areas of prior work; tools
for using code examples, and tools for inspecting them.

A. Using Code Examples
Tools for authoring multistage code examples typically

assume that a complete and correct set of code stages is
not available [5]. They rely on humans to massage a source
code (via direct editing and editable histories) and then turn it
into a multistage code example. Our work is quite different.
We assume that code stages are available and they can be
extracted based on the examples’ existing source code. We
algorithmically generate all the necessary code stages to turn
an existing Java code example into a multistage one; all with

Martin Schäf

http://stackoverflow.com/questions/tagged/java

minimal human intervention. In addition, our technique does
not require a complete program to work. It can handle partial
and non-compiling programs.

Like our work, JTourBus provides a mechanism for incre-
mental navigation of important source code locations [12]. It
leads programmers directly to relevant details about the source
code, but does not offer an automatic way for identifying these
prime locations. In contrast, our MethodSlicing with Reduction
technique focuses on carefully slicing the example into a series
of cohesive chunks of functionality, reducing long chunks
whenever possible.

B. Inspecting Java Programs

MTU shares similarities with code reading by stepwise
abstraction [8]. Code reading by stepwise abstraction calls
for inspectors to identify prime subprograms in the software,
determine their function and use them to determine a function
for the entire program. The effectiveness and efficiency of this
technique for structured programs was validated by [22], and
validated for object-oriented programs by [23]. In contrast,
we focus on algorithmically generating all the prime subsets
of behavior in advance for the programmers. We can gener-
ate these prime subsets based entirely on the source code’s
content.

Another similar approach involves using static program
slicing approaches to aid with code inspection. For example,
CodeSurfer [24] is advertised as a great companion for code
inspections. Tools of this sort tend to be inherently conser-
vative. Consequently, they tend to produce large slices that
are often too large to be of practical use. In contrast, we
reduce this information-overloading problem by automatically
reducing large generated slices (i.e., large code stages). A
reduced code stage shows its most informative code elements
(i.e., code elements with high usage score) and hides (i.e.,
folds) its less informative ones.

VII. CONCLUSIONS

In this paper we present a practical and automated approach
for distilling the essence of Java code examples. We show
a motivating example and explain how our technique distills
its essence. This approach is based on the formulation of
the Multistaging Problem. Our experimental results suggests
that our technique is a valuable tool for understanding code
examples where most of the code is non-localized, but has
only minor benefits when code is partially or fully delocal-
ized. The technique provides consistent speed improvements,
irrespective of delocalization.

REFERENCES

[1] C. L. Corritore and S. Wiedenbeck, “An exploratory study of program
comprehension strategies of procedural and object-oriented program-
mers,” Int. J. Hum.-Comput. Stud., vol. 54, no. 1, pp. 1–23, 2001.

[2] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klem-
mer, “Two Studies of Opportunistic Programming: Interleaving Web
Foraging, Learning, and Writing Code,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2009, pp. 1589–
1598.

[3] C. Parnin and C. Görg, “Building Usage Contexts During Program
Comprehension,” in Proceedings of the 14th International Conference
on Program Comprehension, ser. ICPC ’06, 2006, pp. 13–22.

[4] B. Hartmann, M. Dhillon, and M. K. Chan, “HyperSource: Bridging
the Gap Between Source and Code-Related Web Sites,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2011, pp. 2207–2210.

[5] S. Ginosar, D. Pombo, L. Fernando, M. Agrawala, and B. Hartmann,
“Authoring Multi-stage Code Examples with Editable Code Histories,”
in Proceedings of the 26th Annual ACM Symposium on User Interface
Software and Technology, 2013, pp. 485–494.

[6] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching
Programming: A Review and Discussion,” Computer Science Education,
vol. 13, no. 2, pp. 137–172, 2003.

[7] J. M. Carroll, The Nurnberg Funnel: Designing Minimalist Instruction
for Practical Computer Skill. MIT Press Cambridge, MA, 1990.

[8] R. C. Linger, B. I. Witt, and H. D. Mills, Structured Programming;
Theory and Practice the Systems Programming Series. Boston, MA:
Addison-Wesley Longman Publishing Co., Inc., 1979.

[9] H. Sanchez and J. Whitehead, “Source Code Curation on Stackover-
flow: The Vesperin System,” in Proceedings of the 37th International
Conference on Software Engineering, ser. ICSE ’15, 2015, pp. 661–664.

[10] B. Dagenais and M. P. Robillard, “Recovering Traceability Links be-
tween an API and its Learning Resources,” in Proceedings of the 34th
International Conference on Software Engineering, ser. ICSE ’13, 2012,
pp. 47–57.

[11] C. Kojouharov, A. Solodovnik, and G. Naumovich, “JTutor: An Eclipse
Plug-in Suite for Creation and Replay of Code-based Tutorials,” in
Proceedings of the 2004 OOPSLA Workshop on Eclipse Technology
eXchange, ser. Eclipse ’04, New York, NY, 2004, pp. 27–31.

[12] C. Oezbek and L. Prechelt, “JTourBus: Simplifying Program Under-
standing by Documentation that Provides Tours Through the Source
Code,” in Proceedings of the 23rd IEEE International Conference on
Software Maintenance, ser. ICSM 2007, 2007, pp. 64–73.

[13] M. Mäntylä, J. Vanhanen, and C. Lassenius, “A Taxonomy and an
Initial Empirical Study of Bad Smells in Code,” in Proceedings of
the International Conference on Software Maintenance, ser. ICSM ’03,
2003, pp. 381–384.

[14] A. Cockburn and M. Smith, “Hidden Messages: Evaluating the Ef-
ficiency of Code Elision in Program Navigation,” Interacting with
Computers, vol. 15, no. 3, pp. 387–407, 2003.

[15] N. Pennington, “Comprehension Strategies in Programming,” in Empir-
ical Studies of Programmers: Second Workshop, G. M. Olson, S. Shep-
pard, and E. Soloway, Eds. Norwood, NJ: Ablex Publishing Corp.,
1987, pp. 100–113.

[16] F. Détienne and F. Bott, Software Design–Cognitive Aspect. Springer
Science & Business Media, 2002.

[17] Samphaiboon, Natthawut and Yamada, Y, “Heuristic and Exact Algo-
rithms for the Precedence-Constrained Knapsack Problem,” Journal of
Optimization Theory and Applications, vol. 105, no. 3, pp. 659–676,
2000.

[18] M. Lee, B.-Z. Barta, and P. Juliff, Software Quality and Productivity:
Theory, Practice, Education and Training. Springer, 2013.

[19] B. Du Bois, S. Demeyer, and J. Verelst, “Does the ”Refactor to
Understand” Reverse Engineering Pattern Improve Program Compre-
hension?” in Proceedings of the 9th European Conference on Software
Maintenance and Reengineering, ser. CSMR 2005, 2005, pp. 334–343.

[20] S. Letovsky and E. Soloway, “Delocalized Plans and Program Compre-
hension,” IEEE Software, vol. 3, no. 3, p. 41, 1986.

[21] C. A. Welty, “An Integrated Representation for Software Development
and Discovery,” Ph.D. dissertation, PhD thesis, Rensselaer Polytechnic
Institute, Department of Computer Science, 1995.

[22] V. R. Basili and R. W. Selby, “Comparing the Effectiveness of Software
Testing Strategies,” IEEE Trans. Software Eng., no. 12, pp. 1278–1296,
1987.

[23] A. Dunsmore, M. Roper, and M. Wood, “Practical Code Inspection
Techniques for Object-Oriented Systems: An Experimental Compari-
son,” IEEE Software, no. 4, pp. 21–29, 2003.

[24] P. Anderson and T. Teitelbaum, “Software Inspection using CodeSurfer,”
in Proceedings of the 1st Workshop on Inspection in Software Engineer-
ing, ser. WISE 2001, Jul. 2001, pp. 4–11.

	Introduction
	Accuracy versus Efficiency
	Our approach
	Contributions

	Multistaging to Understand
	The Multistaging Problem
	MethodSlicing
	MethodSlicing with Reduction

	Multistager Architecture
	Multistaging Requests
	Packing Code examples

	Experimental Evaluation
	Experimental Design
	Experimental Materials
	Code Examples
	Program Comprehension Questions
	Response Accuracy Rating Scheme

	Experimental Procedure
	Discussion of Results
	H0,accuracy, X, Y, Response Accuracy
	H0,reviewing-time, Y, Reviewing Time

	Threats to Validity

	Related Work
	Using Code Examples
	Inspecting Java Programs

	Conclusions
	References

